
Engineering degree - Final year intership report

Deep Reinforcement Learning for
soft objects grasping

Author (student):

M. Quentin GALLOUÉDEC
quentin.gallouedec@ecl16.ec-lyon.fr

Technical tutor:

M. Nicolas CAZIN
nicolas.cazin@ec-lyon.fr

School tutor:

M. Emmannuel DELLANDRÉA
emmannuel.dellandrea@ec-lyon.fr

August 26, 2020

Abstract: Reinforcement learning holds the promise of imminent robots ca-
pable of learning a wide range of skills with minimal human intervention.
Among these skills, grasping soft objects would extend the scope of robotic
manipulation to areas in which human dexterity has so far been indispens-
able. However, reinforcement learning for a manipulative task requires a large
number of specific competences such as object identification and segmentation,
pose detection, and task hierarchy planning. For this reason, reinforcement
learning algorithms for manipulation tasks are often limited to simulated envi-
ronments and simple tasks. In this document, we first present an introduction
to the essential notions of Reinforcement Learning (RL) and establish a state
of the art of work concerning the manipulation of soft objects. An interesting
method from the literature, Hindsight Experience Replay (HER), is then tested.
For a rigid object, we show that in only three hours of training on a conven-
tional computer, a simulated robot reaches a success rate of 93.1% for the pick
and place task. Work in progress, whose results are not presented in this docu-
ment, aims at determining whether HER performs as well with soft objects.

Keywords: Deep Reinforcement Learning, Hindsight Experience Replay, soft
objects grasping.

Résumé : L’apprentissage par renforcement constitue la promesse d’imminents
robots capables d’apprendre avec un minimum d’intervention humaine un
vaste éventail de compétences. Parmi ces compétences, la saisie d’objets mous
permettrait d’élargir le champs d’action de la manipulation robotique aux do-
maines dans lesquels la dextérité humaine est jusqu’à ce jour indispensable.
Toutefois, l’apprentissage par renforcement d’une tâche de manipulation re-
quiert un grand nombre de compétences spécifiques comme l’identification et
la segmentation d’objets, la détection de pose ou encore la planification d’une
hiérarchie des tâches. C’est pourquoi les algorithmes d’apprentissage par ren-
forcement pour les tâches de manipulation sont souvent limitées à des environ-
nements simulés et à des tâches simples. Dans ce document, nous présentons
d’abord une introduction aux notions essentielles de l’apprentissage par ren-
forcement et établissons un état de l’art des travaux concernant la manipula-
tion d’objets mous. Une méthode intéressante de la littérature, HER, est ensuite
éprouvée. Pour un objet rigide, nous montrons qu’en seulement trois heures
d’entrainement sur un ordinateur classique, un robot simulé atteint un taux
de succès de 93.1% pour la tâche pick and place. Les travaux en cours, dont les
résultats ne sont pas présentés dans ce document, ont pour but de déterminer
si HER performe aussi bien avec des objets mous.

Mots clés : apprentissage par renforcement profond, expérience rétrospective,
saisie d’objets mous.

Preliminary comments

This report presents the steps and results of my final year work which punc-
tuates my 3 years of studies at École centrale de Lyon in order to obtain the en-
gineering degree. This 21-week internship is part of my academic project as
a preliminary period for the doctorate that I would like to start at the end of
my internship. The subject was deliberately chosen to be close to the field I am
passionate about: Deep Reinforcement Learning (DRL). This internship is of
particular interest since it consists in carrying out a research work that allows
me to apprehend the field that should be the one of my thesis.

This internship started on May 11, 2020 and took place in the middle of the
health crisis due to the Covid-19 pandemic. In order to respect social distanc-
ing measures, the internship took place entirely in telework. The team did its
best to continue its research work in this particular context. To ensure regu-
lar follow-up of the work, and to maintain a link between the laboratory staff,
an informal telephone meeting was organised on a daily basis. In spite of the
efforts, some aspects of the daily life of the laboratory were absent from my
internship: improvised exchanges, group dynamics, team life...

Everything presented in this report is the result of my first 13 weeks of
work. The two oral presentations will take place respectively on September 2,
2020 (week 17 of my internship) and September 18, 2020 (week 18 of my intern-
ship). I will try to integrate the most recent results into my presentations. The
information in this report may therefore differ from the information presented
during these talks.

2

Summary of notations

The notations used in this report are exactly the same as those used by Sutton
and Barto [1] in their book.

Capital letters are used for random variables, whereas lower case letters are
used for the values of random variables and for scalar functions. Quantities
that are required to be real-valued vectors are written in bold and in lower case
(even if random variables). Matrices are bold capitals.

.
= equality relationship that is true by definition
≈ approximately equal
⊂ subset of
∈ is an element of
∑x∈X discrete sum over the elements of X∫

x∈X continuous sum over the elements of X
∏x∈X product over the elements of X
← assignment
→ f : X → Y function f from elements of set X to ele-

ments of set Y
∼ X ∼ p random variable X selected from distribution

p(x) .
= Pr{X= x}

‖·‖2 norm of function on S i.e, ‖ f ‖2 .
= ∑s∈S f (s)2

∇, ∇w,∇θ column vector of partial derivatives with respect to w
and θ

α, β step-size parameters
γ discount-rate parameter
δt temporal-difference (TD) error at t (a random variable)
ε probability of taking a random action in an ε-greedy

policy
λ decay-rate parameter for eligibility traces
π policy (decision-making rule)
π(s) action taken in state s under deterministic policy π

π(a|s) probability of taking action a in state s under stochastic
policy π

πθ policy corresponding to parameter θ
θ,θk, θ− parameter vector of target policy

a an action
arg maxa f (a) a value of a at which f (a) takes its maximal value
A, A(s) set of all actions available, denoted A(s) if it depends

on states
At action at time t

3

b(s) a baseline function b : S 7→ R for policy-gradient meth-
ods

b(a|s) behavior policy used to select actions while learning
about target policy π

ex the base of the natural logarithm, e ≈ 2.71828
E [X] expectation of a random variable X, i.e., E [X]

.
=

∑x p(x)x
Gt return following time t
Gt:t+n n-step return from t+ 1 to t+ n, or to h (discounted and

corrected)
Gλ

t λ-return
h(s, a,θ) preference for selecting action a in state s based on θ

J(θ) performance measure for the policy πθ

k iteration rank
log x natural logarithm of x
L(w) loss function
maxa f (a) the value of f (a) at which f (a) takes its maximal value
n in n-step methods, n is the number of steps of boot-

strapping
N set of natural numbers
N (s, a) noise over a distribution of states and actions
Nt(s) number of times state s has been visited
Nt(s, a) number of times action a has been selected in state s
p explorative weight in an upper confidence bound algo-

rithm
p(r, s′ | s, a) probability of transition to state s′ with reward r, from

state s and action a
Pr{X= x} probability that a random variable X takes on the value

x
qπ(s, a) value of taking action a in state s under policy π

q∗(s, a) value of taking action a in state s under the optimal pol-
icy

qw(s, a) approximate action-value of state s given weight vector
w

Q, Qk, QA, QB array estimates of action-value function qπ or q∗
r a reward
R set of all possible rewards, a finite subset of R

R set of real numbers
Rt reward at time t, typically due, stochastically, to St−1

and At−1

s, s′ states
S set of all nonterminal states

4

S+ set of all states, including the terminal state
St state at time t, typically due, stochastically, to St−1 and

At−1

t discrete timestep
T final timestep of an episode, or of the episode including

timestep t
Ut upper bound confidence at time t
vπ(s) value of state s under policy π (expected return)
v∗(s) value of state s under the optimal policy
vw(s) approximate state-value of state s given weight vector

w
V, Vk array estimates of state-value function vπ or v∗
w, wk, w− vector of weights underlying an approximate value

function
1predicate indicator function (1predicate

.
= 1 if the predicate is true,

else 0)

Table 1: Reinforcement Learning notations

5

Contents

1 Introduction 8

2 Context 10

3 Initial learning - introduction to Reinforcement Learning 12
3.1 Introduction to Reinforcement Learning 12
3.2 Dynamic Programming . 15
3.3 Monte Carlo methods . 18
3.4 Temporal-Difference Learning . 19
3.5 Off-policy learning . 23
3.6 Deep Reinforcement Learning . 24
3.7 Policy Gradients and Actor Critics 27

4 Subject matter grasping 31
4.1 Robotic learning . 31
4.2 Tactile perception in a manipulation task 32
4.3 Grasping what is deformable . 33
4.4 Simulation to real gap . 33
4.5 Hindsight Experience Replay . 34

5 Material and method 35
5.1 OpenAI/gym Fetch environments 35
5.2 The Panda robot and its simulator 35
5.3 Calculation equipment . 37

6 Experiments and results 39
6.1 Deep Deterministic Policy Gradient (DDPG) for reaching: the

criticality of the reward function 39
6.2 Hindsight Experience Replay . 42
6.3 Hindsight Experience Replay for the grasping task 47

7 Future work 49

8 Conclusion 50

Acronyms 54

List of Figures

1 LEARN-REAL work plan . 10
2 Fetch environments . 35
3 Panda robot . 36
4 Panda robotic arm simulation with PyBullet 36
5 Simulator based on Gazebo . 37
6 Comparing learning curves of DDPG for dense and sparse rewards 40
7 Comparing learning curves of unparallelized DDPG with and

without HER for dense and sparse rewards 43
8 Learning curves with and without HER of parallelized DDPG . 44

9 Illustration of trained agent behavior of Fetch environments . . 46
10 Learning curves of HER in FetchPickAndPlace-v1 47
11 Demonstration of pick and place policy 1 48
12 Demonstration of pick and place policy 2 48
13 Pick and place failure . 48

List of Tables

1 Reinforcement Learning notations 5
2 RL algorithm classes . 14
3 Summury of model-free methods based on Dynamic Program-

ming . 17
4 Comparison of Monte Carlo and Temporal-Difference methods 20
5 Approximator of vπ(St) according to the method and policy used

for sampling . 23
6 Summary of model-free methods 24
7 When using non-linear function approximator, bootstrapping can

cause divergence . 27
8 Computation equipments . 38
9 Hyperparameters used to compare DDPG learning curves for

dense and sparse rewards . 41
10 Hyperparameters used to evaluate the contribution of DDPG for

dense and sparse rewards . 42
11 Hyperparameters for training on the four Fetch environments

with OpenAI/baselines . 45

List of Algorithms

1 Iterative policy evaluation for vπ 16
2 Iterative policy evaluation for qπ 16
3 Policy iteration . 16
4 Value iteration . 17
5 Every-visit Monte Carlo . 18
6 GLIE . 19
7 UCB . 19
8 TD(0) . 20
9 TD(λ) . 21
10 SARSA(0) . 22
11 Q-learning . 22
12 IS for off-policy TD(0) . 23
13 Episodic semi-gradient SARSA . 26
14 Online Deep Q-learning . 26
15 DQN . 27
16 REINFORCE . 28
17 A2C . 29
18 DDPG . 30

7

1 Introduction

The manipulation of objects by a robot arm has been a subject studied for many
years. While some tasks appear to be extremely simple for humans, they are
particularly difficult for a robot arm to perform. Grasping an orange without
dropping or crushing it is such an easy task that a child is able to do it in the
first few weeks of life. Part of the reason it’s so easy for us is that we have
innate strengths to succeed:

• the opposition between the thumb and the other fingers,

• the unique sensitivity our hands have in relation to other parts of the
body (see Penfield’s homunculus [2]),

• an area of the brain, called anterior intraparietal cortex used for both the
control of visually guided actions and the extraction of 3D shapes from
objects [3].

Based on our innate gripper ability, the challenge of robotic grasping is one
of the fundamental tasks of robotic manipulation. This task involves a wide
range of skills. The robot must first recognize the object, its position, shape
and pose in space, plan how to position the gripper to grasp the object cor-
rectly, choose the sequence of motor commands required to perform a move-
ment, correctly move its gripper to the desired position, estimate the success
of this task ... Around these skills, other aspects are essential: which sensors
is the robot equipped with? how the robot is controlled (e.g., in torque, speed
or position)? what type of gripper is the robot equipped with? These are all
aspects that determine the success of the grasping task.

Improving reproducibility in LEARNing physical manipulation skills with sim-
ulators using REAListic variations (LEARN-REAL) is a european collaborative
project that addresses this challenge. Within LEARN-REAL several aspects of
the overall problem are studied. One task aims to provide a tool to generate
RGB-D synthetic images of textured objects from a description of the objects
containing among others their 6D position. Another task will focus on the sim-
ulation of soft objects interacting with a 7 degrees of freedom robotic arm. A
final task aims to implement the learning aspect. The learning of the grasping
task will be done using RL methods. It is this last task that this paper deals
with. Section 2 gives more detailled description of the project.

The first part of the work is to assimilate the key notions of RL. Based
largely on the book by Sutton and Barto [1], the lectures by David Silver1 and
Hado van Hasselt2, the Section 3 presents the key notions of RL. This part is an
essential starting point for learning work specifically focused on robotic ma-
nipulation. Section 4 presents the state of the art for RL applied to a grasping
task. Some related topics are also studied such as the performance of recent tac-
tile sensors and the gap issue from simulation to reality. Section 4 also presents
the PANDA from FRANKA EMIKA, which is the robot arm we use for exper-
imentations. A method from the literature called HER (presented Section 4.5)
provides a very agile solution to the exploitation versus exploration trade-off
for multiple goals environments. This method consists in adding hindsight

1https://www.davidsilver.uk/teaching/
2https://www.youtube.com/playlist?list=PLqYmG7hTraZBKeNJ-JE_eyJHZ7XgBoAyb

8

experiments to the replay buffer, corresponding to fictitious successes of the
requested task. This ensures that the replay buffer is fed with episodes con-
taining rewards. Initial results show that this method allows to obtain very
good results, even for complex tasks (such as pick and place). Our experiments
(Section 6) aims to evaluate the performance of HER, and determine if it can
be applied to soft object grasping. The results of our experiments show that
three hours of training on a conventional computer allows a simulated robot to
perform the grasping task with a median success rate of 95%. The results pre-
sented are only the beginning of the ongoing series of experiments. Aspects
such as the nature of the sensors, the softness of the objects have not yet been
integrated. The work in progress, and those planned are presented in Section
7.

9

2 Context

The work presented in this document is part of an overall project called LEARN-
REAL. LEARN-REAL is a european collaborative project supported by Swiss
National Science Foundation (SNSF, Switzerland), the Ministero dell’Istruzione,
dell’Università e della Ricerca (MIUR, Italy), and the Agence nationale de la recherche
(ANR, France), through the ERA-NET CHIST-ERA 2017 Call ORMR3 (Object
recognition and manipulation by robots: Data sharing and experiment repro-
ducibility). Arès, a joint research laboratory between the Imagine team4 and
Siléane (specialized in industrial robotics) was founded by the ANR. The labo-
ratory works in partnership with two leading european research institutions in
robotics, namely Idiap (Switzerland) and Italian Institute of Technology (Italy).

LEARN-REAL aims to enable the learning of robotic handling skills through
the simulation of associated components: objects, environments and robots. To
do this, three essential tools are proposed:

1. A simulator with realistic rendering. This simulator must allow the cre-
ation of a dataset taking into account realistic variations of the environ-
ment (e.g., day/night, good/bad weather). This data will be used to eval-
uate the algorithms in new situations.

2. A virtual reality interface to interact with the robots. This interface will
help the robots in the learning process of different tasks such as object
manipulation. The development of this tool will be based in particular
on existing simulators from the gaming and virtual reality industry.

3. An infrastructure for comparative evaluation of learning performances.
Special attention is put on the reproducibility and transparency of the
proposed learning algorithms. Development and maintenance will be
carried out by Idiap.

The overall workplan is divided into work packages (WPs, see Figure 1).

Figure 1: LEARN-REAL work plan

The chosen case study is the recognition and grasping of fruits and vegeta-
bles. The objective is to test the tool chain developed in the fruit and vegetable

3https://www.chistera.eu/call-2017-announcement
4at École centrale de Lyon

10

grasping case study. This includes the processing of camera (or simulated)
data, which must be capable of object recognition, instance segmentation, and
6D pose estimation. The grasping and manipulation of these objects is based
on the exploitation of the previous processed data. The work carried out has
led, among other things, to the creation of a framework to quickly generate an
image dataset presenting fruits on their tree, with an associated instance seg-
mentation [4]. This tool should feed the supervised learning algorithms used
for semantic segmentation. This segmentation is one of the input components
of the model that will need to be trained for the grasping task.

11

3 Initial learning - introduction to Reinforcement
Learning

3.1 Introduction to Reinforcement Learning

The basic idea of RL is learning what to do. How an agent should interact with
its environment in order to maximize a reward signal. To become familiar with
this field, several notions are essential.

3.1.1 Fundamental elements

Environment The black box that receives the actions and modifies its internal
state according to the actions (e.g., our world).

Agent The one who interacts with the environment by taking actions (e.g.,
you). The interaction of the agent and the environment takes place at each
discrete timestep t ∈N.

State It is a set of variables that describe the environment (e.g., the red car is
parked on that street, the player own that item). The set of possible states is
denoted S+. A state can be terminal, which means that the interaction process
is finished when the environment is in that state. The set of non-terminal states
is denoted S .

Action Action taken by the agent to interact with the environment. The ac-
tion changes the internal state of the environment. (e.g., move forward, jump).
The set of possible action in state s ∈ S is denoted A(s). For the sake of sim-
plicity, it is often stated that actions does not depend on states (A constant on
S). It is therefore denoted just A.

Reward After each action, the agent receives the next state of the environ-
ment and a reward. This is a real number and the agent’s goal is to maximize
this number. The set of possible rewards is denotedR ⊂ R.

Markov Decision Process A Markov Decision Process (MDP) is a mathemat-
ical object that formalizes the process of interaction between the agent and the
environment5. At timestep t, the environment is in state St ∈ S . The agent take
the action At ∈ A(s). The environment changes its internal state according to
its probability law : St+1, Rt+1 ∼ p(r, s′ | s, a). And the process begins again.
The strong assumption is made that, in an MDP, the future is independant of
the past given the present.

5The name Markov Decision Process comes from the Russian mathematician Andrey Markov.
MDP are in a way an extension of Markov chains.

12

Markov Decision Process and Reinforcement Learning The RL problem is
largely based on MDPs. There are, however, two major, often overlooked dif-
ferences between MDPs and a RL problem. First, in most RL problems, the
internal state of the environment is not fully known, and the agent only has
access to the visible fraction of the MDP (called observation and denoted Ot).
Considering that they are quite similar, one will therefore often confuse obser-
vation and state (Ot ≈ St). Second, the environment does not return a reward.
An interpreter is often used to deduce a reward from the observation. For ex-
ample, in the case of a robot arm that wants to grasp an object, the palpable
world is observable with cameras, sensors... but is never completely known.

Exploration versus exploitation RL widely differs from supervised learning
because the agent is not told what is the best baheviour. It has to explore its envi-
ronment by itself and create its experience by is own. Here is the main trade-off
of RL : exploration and exploitation. An agent has to both maximize the reward
signal based on its current knowledge of the environment (exploitation) and
try new things, in order to discover new sources of reward (exploration).

Policy The agent’s behavioral model. Mathematically speaking, it is a func-
tion that map states and actions. It is denoted π and can be either deterministic
or stochastic.

• if policy is stochastic, π(a | s) denotes the probability to choose action
a ∈ A(s) if the state is s ∈ S .

• if policy is deterministic, π(s) denotes the action choosen if the state is
s ∈ S .

Episode The set of successive states, actions and rewards, until the terminal
state :

{S0, A0, R1, S1, A1, . . . , RT , ST}
You might notice that in many cases, the reward of a good action is not

immediate. If I play a good chess move, I’m not going to win immediately.
Thus, the agent actually tries to maximize the return instead of the reward.

Return For a given time t, it is the sum of future discounted reward.

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · (3.1)

Discount factor Denoted 0 ≤ γ ≤ 1, used to make immediate reward more
valuable. γ = 1 is allowed only if the length of the episodes is bounded from
above.

State-value function If the agent is in a state s ∈ S and follows the policy
π, it can expect to receive a certain return (which will be high if your policy is
good). This expectation is the state-value function.

vπ(s)
.
= Eπ[Gt | St = s] (3.2)

Where the subscript π indicates that all actions are choosen with π.

13

Action-value function It is like state-value function, except that the next ac-
tion is not choosen under the policy π.

qπ(s, a) .
= Eπ[Gt | St = s, At = a] (3.3)

Optimal policy It is a policy that maximizes its value function. In other
words, it is a policy that systematically gives the actions that lead to maxi-
mum return. Solving an MPD means finding an optimal policy. Let’s define
the following order relationship.

vπ ≤ vπ′ ⇔ ∀s ∈ S vπ(s) ≤ vπ′(s) (3.4)

Thus,
π∗

.
= arg max

π
vπ (3.5)

Greedy policy Given a action-value function Q, a greedy policy with respect
to Q is the policy that chooses the best action according to Q.

greedy(Q)
.
= s 7→ arg max

a∈A(s)
Q(s, a) (3.6)

Model of the environment It aims for estimating the probability of transition
to state s′ with reward r, from state s ∈ S and action a ∈ A(s) denoted

p(s′, r|s, a) .
= Pr

{
St+1 = s′, Rt+1 = r|St = s, At = a

}
(3.7)

A model of the environment allows predictions to be made about how the
environment behaves.

Usage of model, value, policy in RL we can use (or not) an explicit model/value
function/policy to solve the MDP.

model value
function

policy

model-free 7 - -
model-based 3 - -
value-based - 3 7

policy-based - 7 3

actor-critic - 3 3

Table 2: RL algorithm classes

Planning Using a model to learn, instead of (just) interacting with the envi-
ronment.

Prediction Evaluate the value function of a given policy.

Control Optimize the policy.

14

Off-policy and On-policy learning When reinforcement learning is based
on interaction with the environment, actions are chosen with what is called be-
havioural policy, denoted µ. This policy is not necessarily the one that we want
to optimize or evaluate (denoted π). If π = µ, then the policy to be evaluated
is the one used to interract with the environment. The agent learns on the job: it
is an on-policy algorithm. Otherwise, the agent looks over someone else shoulder.
It uses a different policy to sample episodes: it is an off-policy algorithm. One
of the main advantages of off-policy learning is that every experience can be
used: past experience as well as the experience of any another agent.

3.2 Dynamic Programming

Dynamic Programming (DP) describes the set of algorithms for calculating the
optimal policy based on the knowledge of a perfect model of the environment.
The main idea is to use the value functions defined in equations (3.2) and (3.3).
A very interesting property of value functions is that they satisfy a recursive
relationship. From any policy π, state s ∈ S and an action a ∈ A(s), it can be
stated that

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s] (3.8)
qπ(s, a) = Eπ [Rt+1 + γqπ(St+1, At+1) | St = s, At = a] (3.9)

These two equations are called the Bellman expectation equations. Similar
relationships exist for optimal policy:

v∗(s) = max
a∈A(s)

Eπ [Rt+1 + γv∗(St+1) | St = s, At = a] (3.10)

q∗(s, a) = Eπ [Rt+1 + γ max
a′∈A(St+1)

q∗(St+1, a′) | St = s, At = a] (3.11)

They are called the Bellman optimality equations.

3.2.1 Policy evaluation

First, let’s see how evaluate a given policy π with the policy evaluation algo-
rithm. Equation (3.11) can be rewritten as follows.

vπ(s) = ∑
a∈A(s)

π(a | s) ∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γvπ(s′)

)
(3.12)

The main idea of the algorithm is to iteratively improve the estimation of
vπ , denoted Vk. Here is the update rule:

Vk+1(s) = ∑
a∈A(s)

π(a | s) ∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γVk(s′)

)
(3.13)

The (Vk) sequence will tend towards its fixed point vπ .
You should notice that the Equation (3.13) uses Vk to update, which is only

an approxiation of vπ . Thus, it learns a guess from a guess, and the estimation is
therefore biased. It’s called bootstrapping.

The algorithm based on this principle is called Iterative policy evaluation.

15

Algorithm 1: Iterative policy evaluation (for estimating vπ)
Input: π the policy to be evaluated and a model of the environment p
arbitrarily initialize V(s) for all s ∈ S ;
repeat forever

for s ∈ S do

V′(s)← ∑
a∈A(s)

π(a | s) ∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γV(s′)

)
V ← V′

The same principle can also be used for estimating qπ

Algorithm 2: Iterative policy evaluation (for estimating qπ)
Input: π the policy to be evaluated and a model of the environment p
initialize Q(s, a) for all s ∈ S and a ∈ A(s) ;
repeat forever

for s ∈ S and a ∈ A(s) do

Q′(s, a)← ∑
s′∈S

∑
r∈R

p(s′, r|s, a)

r + γ ∑
a′∈A(s′)

π(a′|s′)Q(s′, a′)

Q← Q′

3.2.2 Policy iteration

The idea of policy iteration is to sequentially estimate a policy π and improve
it to yield a better policy π′. By starting over a sufficient number of times, you
will get π∗. Knowing the action-value function of a policy, the simplest way to
find a better policy is to act greedily with respect to its action-value function:

∀s ∈ S π′(s) = arg max
s∈S

qπ(s, a) =⇒ π ≤ π′ (3.14)

Algorithm 3: Q-policy iteration (or policy iteration, for estimating π∗)
Input: a model of the environment p
arbitrarily initialize π(s) for all s ∈ S ;
while policy is improving do

estimate state-value function Q ≈ qπ with iterative policy
evaluation;

π ← greedy(Q)

3.2.3 Value iteration

The key idea of value iteration is to use the Bellman optimality equation (3.11)
deduce this update rule from it:

Qk+1(s, a)← ∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(

r + γ max
a′∈A(s′)

Qk(s′, a′)
)

(3.15)

16

By sequentially updating Q, it would get closer to the fixed point of the
sequence, i.e., q∗.

Algorithm 4: Q-value iteration (or value iteration, for estimating q∗)
Input: a model of the environment p
arbitrarily initialize Q(s, a) for all s ∈ S and a ∈ A(s) ;
repeat forever

for s ∈ S and a ∈ A(s) do

Q′(s, a)← ∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(

r + γ max
a′∈A(s′)

Q(s′, a′)
)

Q← Q′

3.2.4 Summary of model-based methods

So far, we have seen one method of DP to do prediction, and two to do control.

Prediction Control
iterative policy evaluation policy iteration (alg. 3)
(alg. 1 and 2) value iteration (alg. 4)

Table 3: Summury of model-free methods based on Dynamic Programming

3.2.5 To get further

Some methods increase the speed of learning by getting rid of useless compu-
tation. Here are three of them:

In-place computing systematically uses the most recent value function in-
stead of waiting until the end of the loop to update. Thus, on iterative policy
evaluation, the update rule would be:

V(s)← ∑
a∈A(s)

π(a | s) ∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γV(s′)

)
(3.16)

Prioritized sweeping update some values in priority. For example, we can
define how wrong is a value for a state s ∈ S with the following norm.∥∥∥∥V(s)−max

a∈A
E [Rt+1 + γV(St+1 | St = s, At = a)]

∥∥∥∥ (3.17)

Thus, the wrongest state-values are updated is priority.

Real-time DP update only relevant states, that have a high probability to oc-
cur. By assigning weights to states according to their frequency of occurrence,
the value function can be updated with priority over the states that have a high
weight, thus saving a lot of non-priority calculations.

17

3.3 Monte Carlo methods

A very strong assumption is made in DP: there is a reliable model of the en-
vironment. However, most of the time this is not the case. A model of the
environment is either non-existent or approximate. Monte Carlo (MC) meth-
ods does not require a model of the environment: it is a model-free method. It
just requires experience. In this section, we study MC methods as the first way
to solve a RL problem wihtout needing a model.

3.3.1 Monte Carlo to do prediction

The main idea is to use the return Gt as a approximation of vπ . Let’s assume
that you have sampled N times your environment and that you have a dataset
containing states and the associated return.

〈Si, Gi〉

then,

vπ(s)
.
= Eπ [Gt | St = s] ≈ ∑N

i=1 1Si=sGi

∑N
i=1 1Si=s

(3.18)

Algorithm 5: Every-visit Monte Carlo (for estimating vπ)
Input: a policy π to be evaluated.
initialize the counter N(s) = 0 for each state s ∈ S ;
arbitrarily initialize V(s) for each state s ∈ S ;
repeat forever

sample episode with π: S0, A0, R1, . . . , AT−1, RT , ST ;
for each timestep t of the episode do

N(St)← N(St) + 1 ;
Gt ← Rt+1 + γRt+2 + γ2Rt+3 + · · · ;
V(St)← V(St) +

1
N(St)

(Gt −V(St))

3.3.2 Monte Carlo to do control

Using ε-greedy policy The same algorithm as Algorithm 5 can be used to do
control. One way to do this is to approximate the action-value function qπ and
then update the policy with the greedy policy with respect to the approximate
action-value function. However, for estimating qπ , it is necessary to adopt
an exploratory strategy, otherwise certain couples (action, state) would never
be visited. The simplest way is to sometimes choose a random action. This is
called the ε-greedy policy with respect to Q, where ε is the probability to choose
a random action.

ε-greedy(Q)(s) =

{
random action a ∈ A(s) with a probability ε

arg maxa∈A(s) Q(s, a) with a probability 1− ε

(3.19)
The obtained algorithm is called Greedy in the Limit with Infinite Explo-

ration (GLIE) [5].

18

Algorithm 6: Greedy in the Limit with Infinite Exploration (for esti-
mating q∗)

arbitrarily initialize Q(s, a) for each state s ∈ S and action a ∈ A(s) ;
ε← 1 ;
π ← ε-greedy(Q) ;
repeat forever

Q← MC(π) // use MC for estimating qπ

π ← ε-greedy(Q) ;
decrease ε ;

It is a simple method. But ε-greedy is not the best way to explore. Instead,
you could use Upper Confidence Bounds.

Using Upper Confidence Bounds (UCB) The idea is the give a bonus when
the policy explores state it does not know much. This bonus is upper confidence
Ut(s, a) of a state-action pair. Then, the policy that explores is greedy with
respect to Q + U:

At = arg max
a∈A(St)

(Qt(St, a) + Ut(St, a)) (3.20)

with

Ut(s, a) .
=

√
− log p

2Nt(s, a)
(3.21)

where p ∈]0, 1[is decreased over time to continue to be explorative.

Algorithm 7: Upper Confidence Bounds (for estimating q∗)
initialize the counter N(s, a) = 0 for each state s ∈ S and action

a ∈ A(s) ;
arbitrarily initialize Q(s, a) for each state s ∈ S and action a ∈ A(s) ;
initialize p ∈]0, 1[;
initialize U(s, a) = +∞ for each state s ∈ S and action a ∈ A(s);
repeat forever

sample episode S0, A0, R1, . . . , AT−1, RT , ST by acting greedily w.r.t
Q+U ;

for each timestep t of the episode do
N(St, At)← N(St, At) + 1 ;
Gt ← Rt+1 + γRt+2 + γ2Rt+3 + · · · ;
Q(St, At)← Q(St, At) +

1
N(St ,At)

(Gt −Q(St, At)) ;

U(St, At)←
√

− log p
2Nt(St ,At)

;

decrease p ;

3.4 Temporal-Difference Learning

MC methods use Gt as an estimator of vπ(St). The basic idea of Temporal-
Difference (TD) methods is to use another estimation for vπ(St), from the Bell-
man expectation equation (Equation (3.8)).

19

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s] ((3.8))

In TD methods, you want to make the TD-error δt as close to 0 as possible:

δt
.
= Rt+1 + γV(St+1)︸ ︷︷ ︸

TD target

−V(St) (3.22)

In addition, since you just use Rt+1 and St+1 to approximate vπ(St), you do
not need to wait until the end of the episode to learn. You learn on the fly.

Important remark: For the sake of simplicity, the algorithms presented in
this document do not consider the case where St+1 is terminal. Of course,
in practice we cannot bootstrap in this case. So we have to remove the term
γV(St+1) from the equation in this case.

learn from
incomplete

episode

variance biased

MC no high no
TD yes low yes

Table 4: Comparison of Monte Carlo and Temporal-Difference methods

3.4.1 Temporal-Difference to do prediction

The idea here is to use the same principle as Algorithm 5 but to use Rt+1 +
γV(St+1) instead of Gt. This change makes it possible to update the value of
V after each interaction with the environment, without having to wait for the
end of the episode. The result is presented Algorithm 8.

Algorithm 8: Temporal-Difference (TD(0), for estimating vπ)
Input: a policy π to be evaluated.
arbitrarily initialize V(s) for each state s ∈ S ;
repeat forever

initialize the environment and get the initial state S0 ;
repeat

choose At ∼ π(· | St) ;
take action At and get the reward Rt+1 and the new state St+1 ;
δt ← Rt+1 + γV(St+1)−V(St) ;
V(St)← V(St) + αδt

until the end of the episode;

Rt+1 + γVSt+1 is called the 1-step return. Its weakness is that it only looks
one step into the future. We therefore introduce the notion of n-step return:

Gt:t+1
.
= Rt+1 + γV(St+1) 1-step return

Gt:t+2
.
= Rt+1 + γRt+2 + γ2V(St+2) 2-steps return

Gt:t+3
.
= Rt+1 + γRt+2 ++γ2Rt+3 + γ3V(St+3) 3-steps return

· · ·

20

Which approximator is the best ? The larger the n is, the lower the bias
and the higher the variance. To find a compromise, we therefore introduce the
lambda return:

Gλ
t

.
= (1− λ)

∞

∑
n=1

λn−1Gt:t+n (3.23)

= (1− λ)
(

Gt:t+1 + λGt:t+2 + λ2Gt:t+3 + · · ·
)

You should notice that for λ = 0, G0
t = Rt+1 + γV(St+1). This is the reason

why the previous algorithm is called TD(0).
In the next algorithm, we use an eligibility trace E to spread the reward over

the visited states. It’s equivalent to use λ-return.

Algorithm 9: Temporal-Difference with λ-return (TD(λ), for estimat-
ing vπ)

Input: a policy π to be evaluated.
arbitrarily initialize V(s) for each s ∈ S ;
repeat forever

initialize eligibility E(s) = 0 for each s ∈ S ;
initialize the environment and get the initial state S0 ;
repeat

choose At ∼ π(· | St) ;
take action At and get the reward Rt+1 and the new state St+1 ;
δt = Rt+1 + γV(St+1)−V(St) ;
for each state s ∈ S do

E(s)← λγE(s) + 1St=s ;
V(s)← V(s) + αδtE(s)

until the end of the episode;

3.4.2 Temporal-Difference to do control

As before, we use the Bellman optimality equation to update the approxi-
mate optimal action-value function Q. The following algorithm is called State-
Action-Reward-State-Action (SARSA)6.

6the name SARSA comes from the fact that every element of the quintuple
(St, At, Rt+1, St+1, At+1) is used.

21

Algorithm 10: State-Action-Reward-State-Action (SARSA(0), for esti-
mating q∗)

arbitrarily initialize Q(s, a) for each state s ∈ S and action a ∈ A(s) ;
ε← 1 ;
repeat forever

initialize the environment and get the initial state S0 ;
choose the first action A0 by acting ε-greedily w.r.t. Q ;
repeat

choose the next action At+1 by acting ε-greedily w.r.t. Q ;
take action At and get the reward Rt+1 and the new state St+1 ;
δt ← Rt+1 + γQ(St+1, At+1)−Q(St, At) ;
Q(St, At)← Q(St, At) + αδt ;
decrease ε ;

until the end of the episode;

Similarly, eligibility traces can be used to replace the 1-step return by the
λ-return. The obtained algorithm is called SARSA(λ).

Instead of iteratively evaluate, improve, and so on, Watkins [6] proposed to
use the Bellman optimality equation (3.11) to approximate q∗. Here is the new
update rule.

Qk+1(St, At) = Qk(St, At) + α(Rt+1 + γmax
a∈A

Qk(St+1, a)−Qk(St, At))

This method is called SARSA-max, or Q-learning.

Algorithm 11: Q-learning (for estimating q∗)

arbitrarily initialize Q ;
ε← 1 ;
repeat forever

initialize the environment and observe the initial state S0 ;
repeat

choose the action At ∼ ε-greedy(Q) ;
take action At and get the reward Rt+1 and the new state St+1 ;
δt ← Rt+1 + γmax

a∈A
(Q(St+1, a))−Q(St, At) ;

Q(St, At)← Q(St, At) + αδt ;
decrease ε ;

until the end of the episode;

If Q-learning is responsible of a major breakthrough in RL, it has a impor-
tant issue: it overestimates the value. The problem comes from improving the
policy that is used to sample. One solution is double Q-learning [7]. Double
Q-learning uses two value function QA and QB. You choose randomly which
value function is used to sample and the other one is used to improve.

a′ ← arg max
a∈A(St)

(QA(St, a))

QA(St, |At)← QA(St, At) + α
(

Rt+1 + γQB(St+1, a′)−QA(St, At)
)

(3.24)

22

or

a′ ← arg max
a∈A(St)

(QB(St, a))

QB(St, |At)← QB(St, At) + α
(

Rt+1 + γQA(St+1, a′)−QB(St, At)
)

(3.25)

3.5 Off-policy learning

Off-policy learning consists of using a different policy for learning and for sam-
pling. If necessary, the notation of this the policy used to sample is µ.

Off-policy learning enable to learn from any data, regardless of the policy
followed to get the data. Many methods are based on replay buffer (or dataset)
denoted D that stores past experience. This past experience can be re-used in
an off-policy algorithm.

3.5.1 Importance Sampling

One way to transform an on-policy algorithm into an off-policy algorithm is
to use Importance Sampling (IS). IS involves multiplying the approximation of
the value function by the ratio of the probabilities associated with the actions
involved.

Sampling policy
π µ

MC Gt

T

∏
τ=t

π(Aτ | Sτ)

µ(Aτ | Sτ)
× Gt

TD Rt+1 + γV(St+1)
π(At | St)

µ(At | St)
(Rt+1 + γV(St+1))

Table 5: Approximator of vπ(St) according to the method and policy used for
sampling

In practice, IS is never used with MC because it dramatically increases vari-
ance. However, it is used with TD. The Algorithm 12 gives an example of this.

Algorithm 12: Importance Sampling for off-policy TD(0) (for estimat-
ing vπ)

Input: a policy π to be evaluated.
Input: a policy µ to be followed.
arbitrarily initialize V(s) for each state s ∈ S ;
repeat forever

initialize the environment and get the initial state S0 ;
repeat

choose At ∼ µ(·|St) ;
take action At and get the reward Rt+1 and the new state St+1 ;

δt ← π(At |St)
µ(At |St)

(Rt+1 + γV(St+1))−V(St) ;
V(St)← V(St) + αδt

until the end of the episode;

23

3.5.2 Expected SARSA and Generalized Q-learning

Sequences are sampled by following µ and the TD-error becomes

δt = Rt+1 + γ ∑
a∈A

π(a | St+1)Q(St+1, a)︸ ︷︷ ︸
V(St+1)

−Q(St, At) (3.26)

If b = π, then this is on-policy learning and the obtained algorithm is called
expected SARSA. If b 6= π, then it is off-policy learning and it is called gener-
alized Q-learning

You should notice that Q-learning (Algorithm 11) is generalized Q-learning
with

π = greedy(Q)

b = ε-greedy(Q)

3.5.3 Summury of model-free methods

So far, we have seen several value-based methods for doing control and pre-
diction without needing a model of the environment. The Table 6 summurizes
these algorithms.

Prediction Control
On-policy Off-policy On-policy Off-policy

MC GLIE
TD(0) IS for TD(0) SARSA Q-Learning
TD(λ) IS for TD(λ) SARSA(λ)

Table 6: Summary of model-free methods

3.6 Deep Reinforcement Learning

The algorithms seen so far work well for environments with a very limited
number of states. Beyond a certain threshold, what Richard Bellman calls the
curse of dimensionality occurs. It means that the computational requirements
grows exponentially with the number of states. In many applications that are
considered for RL, the state space is huge: it can correspond to data from cam-
eras, or from many sensors. It is impossible for an agent to explore all com-
binations of pixels (to take the example again) . This is why an alternative to
tabular methods must be found. This alternative is Artificial Neural Network
(ANN).

The advent of ANNs has created a real revolution in the field of RL. ANNs
are fantastic function approximators. They are able to approximate very com-
plex functions, such as those encountered in RL and generalize very well for
neighboring states. ANNs architecture will not be discussed in this report.
They often have little influence on the results. As Andrej Karpathy says7:

7https://twitter.com/karpathy/status/822563606344695810

24

Everything I know about design of ConvNets (resnets, bigger=better batchnorms etc.)
is useless in RL. Superbasic 4 layers ConvNets works best.

DRL is RL using ANNs as approximators of functions. The use of ANNs
is based on the minimization of a cost function that tells us the distance be-
tween the data and the function to approximate. For example, in supervised
learning, the goal is to adjust the parameters of the ANN in order to associate
the input data with the right label. Using labeled data, the cost function is the
gap between the right label and the one predicted by the ANN. In RL, there
is no labeled data : we want the agent to learn by itself and not reproduce the
behavior of someone else. Thus ANN are not used exactly the same way. First,
let’s see how to use ANN to approximate value functions.

3.6.1 Value-based Deep Reinforcement Learning

The approximate state-value function (resp. action-value function) is parametrized
with w and is denoted vw (resp. qw).

Several cost functions to minimize can be choosen. Probably the most intu-
itive ones are

L(w) = ‖Gt − vw(St)‖2 (3.27)

for MC or
L(w) = ‖Rt+1 + γvw(St+1)− vw(St)‖2 (3.28)

for TD(0).
Since vw is differentiable, gradient-based minimazation can be applied. For

example, stochastic gradient descent is based on the following update rules.

w← w− α

2
∇wL(w)

← w + α(Gt − vw(St))∇wvw(St) (3.29)

for MC and

w← w + α(Rt+1 + γvw(St+1)− vw(St)︸ ︷︷ ︸
δt

)∇w(vw(St)− γvw(St+1)) (3.30)

for TD(0)
In practice, Equation (3.30) is not used because it violate causality principle:

the future is independent of the past, knowing the present, so the value func-
tion of the next state cannot depend on a reward arrived before. This is why, in
practice, we use the following formula, which is called the semi-gradient.

w← w + αδt∇wvw(St) (3.31)

The above calculations are also valid for the action-value function. Using
the previous equations, the algorithms 13 and 14 are the versions of SARSA
and Q-learning based on function approximators.

25

Algorithm 13: Episodic semi-gradient SARSA (for estimating q∗)
Input: a differentiable action-value function qw : (S ,A)→ R

parametrized with w
randomly initialize w ;
ε← 1 ;
repeat forever

initialize the environment and get the initial state S0 ;
choose the action A0 ∼ ε-greedy(qw(S0, ·)) ;
repeat

take action At and get the reward Rt+1 and the new state St+1 ;
choose the next action At+1 ∼ ε-greedy(qw(St+1, ·)) ;
δt ← Rt+1 + γqw(St+1, At+1)− qw(St, At) ;
w← w + αδt∇wqw(St, At) ;
decrease ε ;

until the end of the episode;

Algorithm 14: Online Deep Q-learning (for estimating q∗)
Input: a differentiable action-value function parametrization

qw : (S ,A)→ R parameterized with w
randomly initialize w ;
ε← 1 ;
repeat forever

initialize the environment and get the initial state S0 ;
repeat

choose the action At ∼ ε-greedy(qw(St, ·)) ;
take action At and get the reward Rt+1 and the new state St+1 ;
δt ← Rt+1 + γ max

a∈A
(qw(St+1, a))− qw(St, At) ;

w← w + αδt∇wqw(St, At) ;
decrease ε ;

until the end of the episode;

Online Deep Q-learning is unstable in practice because the target

δt ← Rt+1 + γ max
a∈A

(qw(St+1, a))− qw(St, At)

is continuously changing with each iteration. To solve this problem, Mnih et al.
[8] introduced two new ingredients which are a target network and experience
replay. The target network, denoted by parameters w−, is an old version of the
online network with parameters w. Every τ timesteps, the online parameters
are copied into the target parameters (w− ← w). Experience replay, initially
introduced by Lin [9] is storing observed transitions some time and sampled
uniformly from this buffer to update the network. The resulting algorithm is
called Deep Q-Networks (DQN).

26

Algorithm 15: Deep Q-Networks (for estimating q∗)
Input: a differentiable action-value function parametrization

qw : (S ,A)→ R parameterized with w
randomly initialize w and w− such that w = w− ;
ε← 1 ;
initialize a empty dataset D ;
repeat forever

initialize the environment and get the initial state S0 ;
repeat

choose the action At ∼ ε-greedy(qw(St, ·)) ;
take action At and get the reward Rt+1 and the new state St+1 ;
store the transition (St, At, Rt+1, St+1) into the dataset D ;
uniformly sample minibatch (s, a, r, s′) from D ;
δt ← r + γ max

a′∈A
(qw−(s

′, a′))− qw(s, a) ;

w← w + αδt∇wqw(s, a) ;
every τ timesteps, w− ← w ;
decrease ε ;

until the end of the episode;

Unlike the tabular methods, bootstrapping can, under some conditions,
cause divergence.

Method Table lookup Non-linear
MC 3 3
TD 3 7

MC 3 3
TD 3 7

Table 7: When using non-linear function approximator, bootstrapping can
cause divergence

3.7 Policy Gradients and Actor Critics

Model-based methods have the advantage of capturing all the information that
the data can provide. However, they suffer from the fact that most of the infor-
mation is not really relevant for maximizing the reward function. Value-based
methods are closer to the real objective. Since it is a matter of matching states
with their values, it is a kind of regression problem. Nevertheless, these meth-
ods also capture a lot of irrelevant information. In some cases, the optimal
policy is very simple, but the value function can be extremely complex. In this
case, value-based methods have great difficulty in learning properly. To get as
close as possible to the true goal, policy-based methods can be used. The learn-
ing method consists of increasing the probability of the actions that give a high
reward to occur, without trying to calculate that reward. Then, it is possible to
combine value-based method and policy-based method. It is called actor-critic

27

3.7.1 Policy-gradient

First, let us define a stochastic8 policy, parameterized with θ and denoted
πθ(a | s) for all states s ∈ S and actions a ∈ A. An often used policy is
the soft-max policy. It is defined as follows9.

πθ(a | s) =
eh(s,a,θ)

∑a′∈A eh(s,a′ ,θ)
(3.32)

Where h(s, a,θ) is the preference for selecting action a ∈ A in state s ∈ S
based on θ.

The objective function, which means the function we want to maximize, can
be defined in many different ways. For the sake of simplicity, let us assume that
an episode always start in the same state s0. The following results remain valid
without this assumption, but it dramatically simplify the calculations.

J(θ) .
= vπθ

(s0) (3.33)

Defined that way, the objective function J is the expected return under the
policy πθ . The aim is to find θ that maximize J(θ).

Policy Gradient method is based of the stochastic gradient ascent.

θ ← θ+α∇θ J(θ) (3.34)

To find an expression of ∇θ J(θ) that can be sampled, we use what it is
sometimes called the likelihood ratio trick. The demonstration is not be detailled
here. A detailed version is given in [1]. We are just admitting that

∇θ J(θ) ∝ Eπθ[Gt∇θ log πθ(At | St)] (3.35)

Algorithm 16: Monte Carlo Gradient (or REINFORCE, for estimating
π∗)

Input: a differentiable policy πθ parametrized by θ
randomly initialize θ ;
repeat forever

sample {S0, A0, R1, . . . , AT−1, RT} ∼ πθ ;
for each time t ≤ T of the episode do

Gt ← Rt+1 + γRt+2 + γ2Rt+3 + · · · ;
θ ← θ+ α (∇θ log πθ(At | St)) Gt

REINFORCE works on the principle we have just explained: by increasing
the likelihood that the policy will take an action as much as the reward it has
produced. But, depending on the nature of the reward function, the results
can be very different. Take the example of the inverted pendulum. One way
to define the reward function is to give a negative reward if the pendulum is
down, and a zero reward if the pendulum is up. Thus, using REINFORCE, the
probability of all actions will tend irreparably towards 0, which is undesirable.

8In practice, stochastic policies are prefered since most environment are partially observable
9Note that the denominator is just what is a normalization value used so that the action proba-

bilities in each state sum to 1.

28

To solve this issue, a value called baseline and denoted b(s) is subtracted from
the return10. The REINFORCE algorithm with baseline algorithm would use

θ ← θ+ α (∇θ log πθ(At | St)) (Gt−b(s)) (3.36)

What is a good baseline ? A good one is presented in the next section.

3.7.2 Actor-Critic

A good baseline is vπθ
(s) since it represents the expected reward from state

s ∈ S . If an action leads to a better reward than expected, one can increase
its probability to occur. But, it requires to have an estimation of vπθ

(s). To es-
timate the value of vπθ

, one can use all the value-based methods seen above,
based on MC and TD. Let’s denote vw the parameterized value function that
aim to approximate vπθ

. If you use the one-step return instead of the full re-
turn, θ is updated as following:

θ ← θ+ α (∇θ log πθ(At | St)) (Rt+1 + γvw(St+1)− vw(St)) (3.37)

The corresponding algorithm is called Advantage Actor Critic (A2C).

Algorithm 17: Advantage Actor-Critic (A2C, for estimating π∗)
Input: a differentiable actor π parametrized by θ
Input: a differentiable critic vw parametrized by w
randomly initialize actor parameters θ ;
randomly initialize critic parameters w ;
repeat forever

initialize the environment and get the initial state S0 ;
repeat

choose action At ∼ πθ(·|St) ;
take action At and get the reward Rt+1 and the new state St+1 ;
δt ← Rt+1 + γvw(St+1)− vw(St) ;
θ ← θ+ αδt∇θ log πθ(At | St) ;
w← w + βδt∇wvw(St)

until until the end of the episode;

A2C suffers from the same issue as Online Deep Q-learning (Algorithm 14) :
the target is continuously changing with each iteration. To solve this problem,
Lillicrap et al. [10] introduced DDPG (Algorithm 18) that exploits the same
idea used for DQN (Algorithm 15) : experience replay and target network11.
DDPG can only be used in continuous action spaces. To encourage exploration,
an action noise N is added. The resulting algorithm is called DDPG and is
presented Algorithm 18. Note that the algorithm uses a deterministic policy
πθ .

10Substracting a baseline is mathematically correct. Indeed, the value of ∇θ J(θ) remains un-
changed

11The idea of the target network has been slightly modified: instead of freezing the target net-
work θ′ for a certain number of timesteps, DDPG performs a weighted average (with τ) at each
iteration between the target network θ′ and the current network θ.

29

Algorithm 18: Deep Deterministic Policy Gradient (for estimating π∗)
Input: a differentiable actor π parametrized by θ
Input: a differentiable critic qw parametrized by w
randomly initialize actor parameters θ and θ− such that θ = θ− ;
randomly initialize critic parameters w and w− such that w = w− ;
initialize a empty dataset D ;
repeat forever

initialize a random process N for action exploration;
initialize the environment and get the inital state S0 ;
repeat

select action At = πθ(St) +N ;
take action At and get the reward Rt+1 and the new state St+1 ;
store transition (St, At, Rt+1, St+1) in D ;
sample a random minibatch of N transitions (si, ai, ri, s′i) from D
;

δi ← ri + γqw−
(
s′i, πθ−(s′i)

)
− qw(si, ai) ;

update w to minimize L =
1
N

N

∑
i=1

δ2
i ;

θ ← θ+ α∇θ J(θ) with

∇θ J(θ) ≈ 1
N

N

∑
i=1
∇a qw(s, a)| s=si

a=πθ(si)
∇θπθ(s)|s=si ;

θ ← τθ′ + (1− τ)θ ;
w← τw′ + (1− τ)w ;

until the end of the episode;

The data collected by the algorithm depends on the policy being followed.
If the policy suddenly becomes poor, the collected data will become poor too,
and the policy will unlearn what it was good at doing before. A frequently used
solution is to subtract the Kulleman-Leibler (KL) divergence from the objective
function. The KL divergence is a distance between distributions. The obtained
algorithm was introduced by Schulman et al. [11] and was called Trust Region
Policy Optimization (TRPO).

DKL(πθk
||πθk+1

)
.
= E

[∫
a∈A

πθk
(a|S) log

πθk+1
(a|S)

πθk
(a|S) da

]
(3.38)

The new objective function to maximize is JKL(θ).

JKL(θk+1)
.
= J(θk+1)− ηDKL(πθk

||πθk+1
) (3.39)

where η is the KL penaly and is taken small.
In doing so, from one iteration to the next, the policy does not change too

much. This solution works well in practice. The measure of divergence is nev-
ertheless a little complicated to calculate. Proximal Policy Optimization (PPO)
is an alternative proposed by Schulman et al. [12] that simplifies the objective
function and gives similar results.

30

4 Subject matter grasping

The application of DRL in robotic manipulation has been widely studied in re-
cent years. Effective control of robotic systems is a challenge due to their high
dimensionality. DRL provides a model agnostic approach to control such com-
plex dynamic systems. The control of soft object manipulation is one compo-
nent of the general object manipulation issue. The mastery of this component
requires the synergy of other specific skills. In this section, we first present the
recent work in terms of robotic learning. Then we focus of the specific skills
that improves the mastery of these robotic manipulation, and more specifically
soft object manipualtion.

4.1 Robotic learning

Previous work has tried to solve this problem on robotic learning in many
ways, and recent learning-based works show encouraging results [13]. Nev-
ertheless, these successes are relative: the tasks are often very specific and re-
quire either complex engineering upstream or a very long learning curve. The
big question of reinforcement learning applied to object manipulation is how
to learn a generalized policy.

An interesting idea could be to artificially reduce the space of possible states
by dividing the space into two regions: one in which the model is reliable, and
one in which the model is not. It is the idea developped by Lee et al. [14]: they
combine the strengths of model-based methods (by model they mean detailed
description of how to perform the task, not derived from learning) with the
flexibility of learning-based methods. In uncertain regions, a locally learned
policy is used. They called their method GUAPO (Guided Uncertainty-Aware
Policy Optimization). However, this approach is not entirely satisfactory since
it requires a dynamic model created by hand for certain regions.

Let’s take the example of a task that consists of picking fruit from a bin.
We would like the resulting policy to be able to properly grasp the fruit with-
out dropping or damaging it. Ideally, the policy should also be able to adopt
high-level behaviors, such as anticipating which fruit to grasp first or identi-
fying and moving an inconvenient fruit to grasp another. One of the method
that give good results is Hierarchical Reinforcement Learning (HRL) [15]. It
involves dividing a policy into several policy levels. Levels of abstraction of
decisions and time horizons evolve increasingly with the hierarchical level of
the layer. A similar idea is also to consider a high-level task as a structured suc-
cession of low-level tasks. Thus, specific capabilities such as object recognition
are trained upstream of the robotic learning phase. The question to be aswered
is: does having priors knowledge facilitate learning to perform manipulation
? A first work led by Piergiovanni et al. [16] suggest that the capability of pre-
dicting the future observations (based on an autoencoder) significantly helps
training. Another work led by Yen-Chen et al. [17] aimed to evalute the gain
of a prior training of the model on a passive vision task. When they adapted
it to perform an active manipulation task, the result showed that pre-training
on vision tasks significantly improves generalization and sample efficiency for
learning to manipulate objects. They obtained very encouraging results since
the success rate for a suction task on unseen objects was 91% with only 10 min-
utes of training.

31

Another approach is to realize that our innate ability to adopt complex be-
haviors may well help robots in their learning phase. By showing them how a
human being would do this task, the robot would be guided to a policy base
that successfully performs the task. This method is called learning by demon-
stration. Rajeswaran et al. [18] applied learning from demonstration on a multi-
fingered hand and used DRL to learn. They showed that model-free DRL can
effectively scale up to complex manipulation tasks with a high-dimensional
24 degrees of freedom hand, and solve them from scratch in simulated exper-
iments. Plus, learning from demonstrations significantly improves improves
the learning capabilities. With just a few hours of robot experience, the ob-
tained policy is very robust and exhibit very natural movements.

4.2 Tactile perception in a manipulation task

Manipulating objects does not involve just learning. The performance of the
grasping task also depends on other parameters such as the ability to feel ob-
jects or to make reliable grasping contact with them with a suitable gripper. A
suitable grasping organ is required, and an example of an efficient gripper re-
sulting from many years of improvements gives us a good basis for our work:
our hand. Many robotic grasping organ are inspired by it [19, 20]. It is also
possible to add new capabilities to the gripper. , such as suction. Chin et al.
[21] proposed a gripper that combine three gripping modes: suction, parallel
jaws and flexible fingers. They showed that conbining these capabilities, such a
gripper can perform complex tasks. They acheived to grasp 88% of the objects
tested, 14% of which required a combination of grip modes to be grasped.

The ability to feel objects is also a key point in grasping and is inspired
by the tactile perception of human beings. This task is performed by tactile
sensors. Some works show that taking inspiration from the tactile perception
of humans gives good results [22]. Having at first a low number of output
data ([23] classic tactile sensor six-axis force/torque), the sensors proposed in
recent work are constantly increasing the number and reliability of measure-
ments. PapillArray is an incipient slip sensor introduced by Khamis et al. [24].
They thought that not only tactile forces are important in manipulation task
but also friction and the occurrence of incipient slip. Since it is human-inspired
it should help to improve manipulation tasks.

Recent work also shows that the performance of these tactile sensors can
greatly benefit from advances in deep learning. For example, Fleer et al. [25]
were based on organisation of human haptic search behavior, to propose an
haptic sensor that uses Recurent Attention Model to explore an object in order
to identify objects. Sferrazza et al. [26] also took advantage of recent progress
in computer vision and introduced a vision-based tactile sensor based.

Basing the learning of a manipulation task on tactile sensors gives good
results. Chebotar et al. [27] trained a model that predict the grasp outcome
(whether the grasp task is a success or not). They used they predictor outcome
to provide a feedback to the DRL algorithm (that also uses spatio-temporal
features extracted from a biomimetic tactile sensor) to estimate the required
grasp adjustment and do the regrasping. Allowing 3 regrasps, they were able
to get improve the sucess rate on the grasping task from 40.2% to 92.1%

32

4.3 Grasping what is deformable

The challenge of manipulating soft objects is not such a recent question [19].
As we have just seen, tactile sensors help to better perceive the object to be ma-
nipulated and therefore help a lot for a grasping task. This help is all the more
essential to perceive the deformation of an object. The work of Sanchez et al.
[28] shows that using both the output of a tactile sensor and the deformation
model, it is possible to predict the shape of the soft object online. However,
when objects and gripper becomes complex, the work necessary to compute a
good approximation of the shape of the object becomes very high. Some work
focused on making good approximation to lighten the computation: Luo and
Xiao [29] modelled the interactions between a rigid and an elastic object by
taking into account forces, deformations and frictions. They introduced a new
approximation of material deformation adapted to interactive environments.
Their approach is valid even when there are multiple contacts. The computing
means of that time (2007) allowed them to go up to 1 kHz.

Although the manipulation of soft objects is more complex than the ma-
nipulation of hard objects, there are nevertheless some examples of works that
have been implemented and that obtain good results. Matas et al. [30] first use
DRL on deformable object manipulation. They train the model on simulation,
and acheived to deploy it successfully in the real world with domain randomi-
sation. The model performed well even with unseen objects.

4.4 Simulation to real gap

Learning complex policies such as grasping an object requires a lot of train-
ing due to data inefficiency of widely-used DRL methods. Most of the best
results are obtained using several million steps. [31, 32]. This number is far too
high for this training phase to be done on physical systems. This is why the
preferred method is to train the robot arm in simulation. The simulation of a
trajectory takes much less time than the duration of this trajectory with phys-
ical robot. Moreover, in simulation, we can afford to distribute the training.
Simulation thus allows to obtain a training capacity much higher than in the
physical systems.

The natural question is: once the model is trained in simulation, is it pos-
sible to deploy it easily on physical systems? In fact, if certain precautions are
not taken, it does not work. This is called the simulation-to-real gap12. The
gap between the simulation and the real system in terms of dynamics and per-
ception causes a catastrophic drop in performance. Most of the time, even an
extremely simple task that is well learned in simulation will not be correctly
performed on a physical systems.

To tackle this issue, two methods are often used. The first is to increase the
quality of the simulation to get as close as possible to reality. Since observation
is often based on cameras, GANs can be used to increase the visual fidelity of
the simulated images. The second approach is to make the controller robust to
changes in system properties. If the controller is robust to system variations,
it will also be robust to system variations when moving from simulation to
reality, thus allowing a better transfer. Randomization of certain variables in

12or sim2real

33

the simulation can be used to achieve this robustness. For example, one can
randomize the dynamics of the system, use a stochastic policy or add noise to
the observations. In practice, the two methods are used together [33].

Making the simulation more realistic can be achieved by using self-supervised
learning. Recent papers have shown that very good results can be obtained:
Kahn et al. [34] combined the approach of using an internal world map (a com-
putationally intensive operation that does not allow for learning from failures)
and the learning-based approach (learning from failures but difficult to deploy
because of the high complexity of the samples). For this, they introduced a
generalized computation graph that uses self-supervised learning to train the
model. They evaluate their approach on a real-world remote car and show
that it can learn to navigate in a complex indoor environment with a 4-hour
fully autonomous training. Hwangbo et al. [35] used self-supervised learning
based on real data to simulate the actuator (that map actions to torque) of their
legged robot. The training process lasts a several hours on an ordinary desktop
PC. Without any modification of filtering, the trained policy was deployed on
their real robot and achieved impressive results: it ran faster than ever before,
used less energy, and it had never been checked when he had to recover from
falling, even in very complex configurations. In a paper from Jeong et al. [36] it
is showed that self-supervised domain adaptation (SSDA) method, which uses
unlabeled real robot data outperform domain randomization.

4.5 Hindsight Experience Replay

One of the most important challenges of reinforcement learning is to find a
compromise between exploration and exploitation to make the training as ef-
fective as possible. This challenge is particularly complicated when environ-
ments have sparse rewards. To guide the agent to the high reward zones, sev-
eral methods have been tried [37]. HER was introduced in 2017 by Andrychow-
icz et al.. The key idea of HER is to see a fail as a success, but with another goal.

To get the intuition, suppose you throw a basketball but miss the basket. If
the basket had been where you threw the ball, your shot would have been a
hit. In a learning process, you can add this fictitious success to your experience
(e.g., a replay buffer). This is the main idea behind HER: it adds simulated hits
to the experience.

The effectiveness of this approach has been seen in many robotic environ-
ments [39]. Even with a binary reward function (success or failure), HER shows
very promising results. For complex environments and tasks such as those we
encounter in robotics, HER could save us the tedious work of building a good
reward function. A simple hit/miss function could be sufficient.

Several strategies were proposed in the original paper to create those arti-
ficial goal. The most effective one is called future. For a given timestep in an
episode, the future strategy consist in creating k artifical goals picked randomly
from the future states of the same episode.

34

5 Material and method

5.1 OpenAI/gym Fetch environments

The approach of this work consists of an iterative increase in complexity. First,
the experiments will be done on basic robot arm simulation environments.
OpenAI/gym [20] proposes a set of 4 robotics environments (Figure 2 to give a
starting point to our experiments. These 4 environments for Gym are based on
the MuJoCo physics simulation engine. Each environment consists of a robot
before performing an elementary task: reaching a point, sliding a cube to a
given position, pushing a cube to a given position, picking and placing a cube
to a given position.

(a) FetchReach-v1 (b) FetchSlide-v1

(c) FetchPush-v1 (d) FetchPickAndPlace-v1

Figure 2: Fetch environments

For each of these environments, two reward functions are available: a dense
and a sparse. The sparse reward function can take two values : 1 when the task
is acheived, and 0 otherwise. The dense reward function can take intermediate
values (between 0 and 1) depending how close from the success the agent is.
For exemple, for the reaching task, the dense reward function would depend
on the distance between the gripper and the goal.

5.2 The Panda robot and its simulator

Once good results have been obtained on the simple OpenAI environments,
the objective will be to transfer them to the following simulator. The robot
used for the subject is the robot arm PANDA from FRANKA EMIKA (Figure

35

3). It has 7 degrees of freedom, with a payload of 3 kg and a reach of 850 mm.
Its grasping organ is a gripped with two parallel fingers. It has a continuous
gripping force of 70 N and a stroke of 80 mm.

(a) Panda robot (b) Panda robot in its environment

Figure 3: Panda robot

The training phase will be done in simulation. As explained previously,
training in simulation makes it possible to generate many robots in parallel
and thus to produce much more data than on a physical robot. In order for
the trained model to be deployed on the real robot, the gap between simula-
tion and reality must be anticipated. This is why special attention is paid to
the realistic nature of the data produced by the simulator. Indeed, in these real
conditions, the light is likely to change, there may be shadows, the fruits are
not all the same in shape, weight or texture etc.. The simulator will have to be
able to simulate camera renderings faithful to reality and reproduce all these
variations in order to limit the gap between simulation and reality as much as
possible. These realistic variations also affect other sensors, such as torque sen-
sors or the tactile sensor. Work is in progress to create this realistic rendering
simulator. A first version based on the PyBullet [40] physics simulation engine
is shown in Figure 4.

(a) Simulated Panda robot (b) Simulated fruit basket

Figure 4: Panda robotic arm simulation with PyBullet

36

A second version of the simulator is under construction. This new version
should allow faster image rendering and thus increase the simulation speed.
This simulation speed is an essential component of the learning process. If the
simulation is not fast enough, the algorithm will not be able to learn in a reason-
able time. This second version is developed thanks to the ROS13 and Gazebo14

frameworks. An overview of the current rendering is presented Figure 5

Figure 5: Simulator based on Gazebo

Eventually, this simulator will have to be able to integrate all the essential
components of our problem: a realistic rendering of the cameras and other
sensors, a simulation of deformable fruits which will have to manage collisions
with other objects in the scene (cage, other fruits, etc.).

5.3 Calculation equipment

The configuration of the computer used to do the training is shown in Table 8.

13https://www.ros.org
14http://gazebosim.org

37

Computer
Operating system Ubuntu 18.04.5 LTS
OS Type 64 bits
Memory 31.3 Gb
Processor Intel® Core™ i7-6700HQ CPU @ 2.60Ghz × 8
Graphics card GeForce GTX 1070/PCIe/SSE2
Software versions
Python 3.7.8
tensorflow-gpu 1.14
mujoco-py 2.0.2.11
stable-baselines[mpi] 2.10.0
baselines 0.1.6
cuda 10.1

Table 8: Computation equipments

38

6 Experiments and results

The following experiments evaluate some learning principles found in the liter-
ature that could be applied to soft object grasping. Many architectural choices
can affect the quality of learning. As we have seen in the Section 4, one can
play with the state space, the action space, the task hierarchy, the reward func-
tion, the learning algorithm, the reliability of the simulation, the adaptation of
domains to move from simulation to reality etc. These aspects all deserve at-
tention, and the development of an overall learning strategy will need to take
all these issues into consideration. In this work, priority is given to evaluating
learning strategies in simulation. Here we adopt an iterative approach where
the complexity of the environment is increasing. We start with a simple robot
arm environment that must learn to reach a point with its gripper. In this envi-
ronment, we evaluate how an elementary DRL algorithm (DDPG, Algorithm
18) behaves (Section 6.1). Then the task becomes more complex: pushing, slid-
ing and finally grasping. As the complexity of the task increases, the rewards
become more and more sparse, making learning more complicated. By repro-
ducing Plappert et al. [39] results (Section 4.5), we show that adding a HER
helps to solve part of the exploration problem (Section 6.2). Finally, we evalu-
ate more specifically the grasping task (Section 6.3) which is the central task of
our subject. We show that after a reasonable learning time, the resulting model
successfully completes the pick and place task in almost all the time.

The results presented in this paper are only the beginning of the ongoing
experiments. Continuing on this iterative approach of increasing complexity,
the next experiments will evaluate the impact of using soft objects, and ex-
tending observation space by including data from cameras and tactile sensors.
Details of the upcoming experiments are presented in Section 7.

The results of the experiments are represented as learning curves. The ex-
periments were repeated several times. The line represents the median success
rate at a given learning epoch and the shaded area represents the interquartile
range.

6.1 DDPG for reaching: the criticality of the reward function

We first evaluate the performance of DDPG for the reaching task. The objective
for the robot is to move its gripper to a target position. Several reward func-
tions are possible. The first one is to give a +1 reward if the gripper is at most
a given distance from the target position, 0 otherwise. This is called a sparse
reward function. A second reward function, called dense, is to give a reward
between 0 and +1, the higher the reward the closer the gripper is to the tar-
get position (this function is therefore continuous). We compare the learning
curves for these two reward functions (Figure 6).

All hyperparameters are shown in Table 9. The hyperparameters are the
default hyperparameters of the stable-baseline implementation. No fine tuning
has been done.

The training was done on a classic laptop computer (described in Section
5), and lasted 20 minutes. It was repeated 14 times with a different seed.

One can notice that the task is learned very quickly when the rewards are
dense. However, when the rewards are sparse, the algorithm does not learn
at all. It is likely that the state space is so large that it is very unlikely that the

39

0 5 10 15 20

0

0.5

1

epochs

su
cc

es
s

ra
te

dense rewards sparse rewards

Figure 6: Comparing learning curves of DDPG for dense and sparse rewards.
The model was trained on the OpenAI/gym FetchReach-v1 environment. The
training process lasts approximately one hour and was repeated 14 times. Re-
sults tends to show that dense rewards are required to learn in this configura-
tion.

expected position will be reached by chance. The rewards would therefore be
too infrequent to allow effective learning.

For this simple task, it is easy to imagine a dense function. It can easily be
established that the closer the gripper is to the target, the higher the reward
should be. Thus, we guide the model’s exploration towards areas of high re-
ward. However, for more complex tasks, it is much harder to define this dense
reward function. Let’s take the example of the task of sliding a cube to a tar-
get position. If the same reward function is chosen (the closer the cube is to
the target, the higher the reward), this function would be constant on states
where the gripper has not touched the cube. Therefore, it would be impossi-
ble to guide the model to the high reward areas until the gripper has touched
the cube. This example shows that for slightly more complex tasks, the engi-
neering of the reward function is much more complex, and becomes a critical
component of learning.

40

Environment
Type FetchReach-v1

DDPG
Number of layers 2
Hidden size 16
Actor and critic learning rate 0.001
Buffer size 106

Training
Total epochs 20
Number of cycles per epoch 100
Number of batches 50
Batch size 256
Number of test rollout 10
Scale of action noise 0.2

Table 9: Hyperparameters used to compare DDPG learning curves for dense
and sparse rewards

41

6.2 Hindsight Experience Replay

In the previsous section, we showed that DDPG manage to solve the reaching
tasks as long as the reparation of the rewards is dense. For this simple task
it is easy to densify the reward function. However, for more complex tasks
such as grasping objects, densifying the reward function is very complex. This
requirement is therefore very strong.

As described in Section 4.5, HER presents a clever solution to this prob-
lem. In this section, we attempt to reproduce the results presented by Plappert
et al. [39] on a rigid cube for the four basic tasks that are : reach, slide, push
and pick and place. The experiments should allow us to answer the following
questions: (1) What performances can we obtain using a classical learning al-
gorithm? (2) What is the gain of adding HER in the same algorithm? (3) What
kind of reward distribution best fits HER?

6.2.1 DDPG and HER

The first tries were done using stable-baselines [41].

DDPG
Number of layers 2
Hidden size 16
Actor and critic learning rate 0.001
Buffer size 106

Training
Total epochs 20
Number of cycles per epoch 100
Number of batches 50
Batch size 256
Number of test rollout 10
Scale of action noise 0.2
HER (if enabled)
HER experience per actual experience 4
Observation clipping [−5, 5]

Table 10: Hyperparameters used to evaluate the contribution of DDPG for
dense and sparse rewards

First, we notice that adding HER allows the agent to learn very efficiently
(from the fourth epoch) a task not learned in the previous section: reach with
sparse rewards.

Nevertheless, the learning has been a failure on the other tasks. None of
them were learned, and the success rate did not increase at all during training.

Results from Plappert et al. [39] are much better. It is likely that some hyper-
parameters play a key role in learning tasks using HER. It seems that this lack
of learning may be due to the lack of sufficient parallelisation. In the original
paper, 19 Message Passing Interface (MPI) workers were working in parallel.
Hill et al. [41] suggest that 8 MPI workers are at least necessary to obtain good
results. In the following section we will use 8 workers and we will rigorously
reproduce the hyperparameters of the initial paper.

42

0

0.5

1

su
cc

es
s

ra
te

FecthReach-v1 FecthSlide-v1

0 10 20 30 40

0

0.5

1

epochs

su
cc

es
s

ra
te

FecthPush-v1

0 10 20 30 40
epochs

FecthPickAndPlace-v1

with HER and sparse rewards without HER and sparse rewards
with HER and dense rewards without HER and dense rewards

Figure 7: Comparaing learning curves of unparallelized DDPG with and with-
out HER for dense and sparse rewards. The model was trained on the Ope-
nAI/gym Fetch environments. The training process lasts approximately one
hour and was repeated 6 times per environment. Results tends to show that
this configuration is not sufficient to learn the tasks.

43

6.2.2 Parallelized learning for HER

To be able to reproduce the results of Plappert et al. [39], it is necessary to
match the hyperparameters used as closely as possible. For this, we will use
the OpenAI baselines [42] package for the following. This package notably
allows to use MPI to parallelise the learning with MPI. It is advised to use at
least 8 workers to get good results [41].

The model was trained with and without HER. The hyperparameters used
are presented in Table 11 and the learning curve in Figure 8. An illustration of
how the agent behaves after 20 training epochs is shown in Figure 9.

0

0.5

1

su
cc

es
s

ra
te

FecthReach-v1 FecthPush-v1

0 5 10 15 20

0

0.5

1

epochs

su
cc

es
s

ra
te

FecthSlide-v1

0 5 10 15 20
epochs

FecthPickAndPlace-v1

with HER without HER

Figure 8: Comparing learning curves of parallelized DDPG with and without
HER. The model was trained on the OpenAI/gym Fetch environments. The
training process lasts approximately one hour and was repeated 14 times per
environment. Results tends to show that this configuration is not sufficient to
learn the tasks.

Visually (Figure 9), we can see that the agent has learned the reach and push
task well. For example, the reach task is successful from the eighth timestep
(image 3). For slide, there are still a lot of failures but the test presented visually
shows that the agent is still able to correctly perform the task at this stage of
training. Conversely, the pick and place task is not yet learned. We can see that

44

Environment
Maximum magnitude of actions 1.0
Rewards sparse
DDPG
Number of workers 8
Number of layers 3
Hidden size 256
Actor and critic learning rate 0.001
Buffer size 106

Polyak-averaging coefficient 0.95
Quadratic penalty on actions 1.0
Observation clipping (before normalization) [−200, 200]
Training
Total epochs 20
Number of cycles per epoch 50
Rollout batch size per MPI worker 2
Number of batches 40
Batch size 256
Number of test rollout 10
Probability of taking a random action 0.3
Scale of action noise 0.2
HER (if enabled)
HER experience per actual experience 4
Observation clipping [−5, 5]

Table 11: Hyperparameters for training on the four Fetch environments with
OpenAI/baselines

the agent is laboriously moving the cube to the position but has not yet fully
assimilated the action of using his gripper to move the cube. In Section 6.3, we
show nevertheless that with a little more training, this task will be perfectly
assimilated by the agent.

45

Figure 9: Illustration of agent behavior of Fetch environments after 20
epochs of training. The lines correspond in order to the FetchReach-v1,
FetchSlide-v1, FetchPush-v1 and FetchPickAndPlace-v1 environments.
Four timesteps separate two successives images.

46

6.3 Hindsight Experience Replay for the grasping task

In the previous section, we showed that HER is a very effective tool to solve
the exploration issue in a multi-goal environment such as robotics. The task
we are particularly interested in is the grasping of soft objects. Therefore, in
this section we study the learning performance of HER for the grasping task.
We also evaluate what success rate is achievable with the DDPG+HER algo-
rithm for the grasping task. With this reference, we will be able to compare the
learning results when the cube becomes a soft object.

The hyperparameters used are the same as those in Table 11, except that the
training last longer (80 epochs instead of 20). The training lasted approximately
three hours and were done on a bassic laptop (see Section 5). It was repeated
15 times. Learning curve is shown Figure 10. Some demonstrations of the
obtained results are presented on Figures 11 12 and 13.

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

epochs

su
cc

es
s

ra
te

FecthPickAndPlace-v1

Figure 10: Learning curves of HER in FetchPickAndPlace-v1. The model
achevies 93.1% success rate. The training lasts approximately 3 hours and was
repeated 25 times.

47

Figure 11: Demonstration of the pick and place policy learned after 80 epochs
of training. Two timesteps separate two successive images. The success of the
task is achieved from the 15th timestep.

Figure 12: Demonstration of the pick and place policy learned after 80 epochs
of training. Two timesteps separate two successive images. The success of the
task is achieved from the 15th timestep.

Figure 13: Pick and place failure. The policy was learned during 80 epochs.
Eight timesteps separate two successive images.

48

7 Future work

Initial results are encouraging. They allow us to confirm that the HER method
could be applied to learn a grasping task in a reasonable amount of time, saving
us the tedious work of creating a good reward function. Nevertheless, we can
see that in order to reproduce satisfactory results, it is necessary to parallelize
the learning process to feed the replay buffer sufficiently. Without this, policy
does not learn when the task is somewhat more complex than the reach. The
causes of this discrepancy in results are unclear and could be due to the way
OpenAI/baselines aggregates interaction data.Future work will dive into the
code to determine the true reason.

Many questions need to be answered now. The real robot is based on data
acquisition by cameras, which greatly increases the dimensionality of the ob-
servation space. Learning directly from pixels is often not efficient. This is
why processing algorithms (such as semantic segmentation, or pose recogni-
tion) process the pixel data upstream. RL algorithms based on this digested
data have a much better chance of learning correctly. Future work will attempt
to determine how learning algorithms respond to this change in observation
space.

Next, the objects captured so far are hard and cubic objects. Grasping
soft objects is much more challenging since the force with which the object
is grasped has to be adapted. This force must be just enough to prevent the
object from slipping, but must not be excessive, as this could damage the soft
object. A lot of work has been done on the design of the gripper to make it
suitable for gripping soft objects. It should be noted that the wider the surface
in contact with the soft object, the less this compromise on gripping force is
tightened: it is much easier to catch an orange with the whole hand than with
just two fingers.

Work in progress aims at making the object to be simulated soft based on
simple deformation models. The goal is then to adapt the generation of hind-
sight experiences so that it can work with soft objects. We will then be able to
compare the results obtained with a rigid object and with a soft object.

Then, the goal will be to extend the observation space with simulated cam-
eras and tactile sensors. Using instance segmentation and pose detection al-
gorithms, we should be able to identify the configuration that allows the best
learning capability.

Finally, the results obtained would be transferred to a real robot. As we
have seen in part 4.4, several methods can be used to overcome the gap be-
tween simulation and reality. Initially, we have to find the same results with
an environment that simulates our PANDA robot. A simulator based on ROS
and Gazebo is under development and should be available by the end of 2020.
Then, the planned work aims at comparing methods such as the one based on
domain randomization, or self-supervised learning.

49

8 Conclusion

We started by studying the mathematical foundations and the essential no-
tions of reinforcement learning. Using these concepts, we were able to estab-
lish a state of the art in reinforcement learning for soft object manipulation.
The skills required are numerous. Robotic manipulation questions the biggest
issue in reinforcement learning: how to find a good policy when the dimen-
sionality of the observation space is so important? Many tracks are relevant,
and they must be combined. By basing our approach both on the perception of
the environment with tactile sensors, the processing of camera data by vision
algorithms, the observation space reduces its dimensionality while keeping its
richness. Robot simulation learning can use methods emerging from the lit-
erature, such as HER. We show in this work that for a complex task, a few
hours of training are enough to acquire the competence with a high reliability.
Nevertheless, this method still requires to imagine an algorithm that allows to
generate retrospective experiences. A conceivable extension of HER could be
to integrate the hierarchical version of the goals, replacing the objectives also
at higher hierarchical levels.

Eventually, this learning will be based on realistic simulations of the envi-
ronment and more particularly of its variations. This will allow the gap be-
tween simulation and reality to be reduced as much as possible. By combining
this with effective methods to overcome this gap, such as domain randomiza-
tion, the trained agent could be deployed very easily in the real world.

The experiments done in this document only concern rigid objects for the
moment. The good results obtained make us confident to extend them to soft
objects. The work in progress aims at confirming this intuition.

50

References

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018. URL http://incompleteideas.net/book/RLbook2020.pdf.

[2] Wilder Penfield and Edwin Boldrey. Somatic motor and sensory representation in the cerebral
cortex of man as studied by electrical stimulation. Brain, 60(4):389–443, 1937.

[3] Jean-Baptiste Durand, Koen Nelissen, Olivier Joly, Claire Wardak, James T Todd, J Farley
Norman, Peter Janssen, Wim Vanduffel, and Guy A Orban. Anterior regions of monkey
parietal cortex process visual 3D shape. Neuron, 55(3):493–505, 2007.

[4] Thomas Duboudin, Maxime Petit, and Liming Chen. Toward a procedural fruit tree rendering
framework for image analysis. arXiv preprint arXiv:1907.04759, 2019.

[5] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Convergence
results for single-step on-policy reinforcement-learning algorithms. Machine learning, 38(3):
287–308, 2000.

[6] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

[7] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Dou-
ble Q-learning. 9 2015. URL https://arxiv.org/abs/1509.06461.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, and oth-
ers. Human-level control through deep reinforcement learning. nature, 518(7540):529–533,
2015.

[9] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[10] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Pro-
ceedings, 2016.

[11] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
Region Policy Optimization. 2 2015. URL https://arxiv.org/abs/1502.05477.

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. 7 2017. URL http://arxiv.org/abs/1707.06347.

[13] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. Learning synergies between pushing and grasping with self-supervised deep
reinforcement learning. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 4238–4245, 2018.

[14] Michelle A Lee, Carlos Florensa, Jonathan Tremblay, Nathan Ratliff, Animesh Garg, Fabio
Ramos, and Dieter Fox. Guided Uncertainty-Aware Policy Optimization: Combining
Learning and Model-Based Strategies for Sample-Efficient Policy Learning. arXiv preprint
arXiv:2005.10872, 2020. URL https://sites.google.com/view/guapo-rl.

[15] Andrew G Barto and Sridhar Mahadevan. Recent Advances in Hierarchical Reinforcement
Learning. Discrete Event Dynamic Systems, 13(1):41–77, 2003. ISSN 1573-7594. doi: 10.1023/A:
1022140919877. URL https://doi.org/10.1023/A:1022140919877.

[16] AJ Piergiovanni, Alan Wu, and Michael S. Ryoo. Learning Real-World Robot Policies by
Dreaming. IEEE International Conference on Intelligent Robots and Systems, pages 7680–7687, 5
2019. ISSN 21530866. doi: 10.1109/IROS40897.2019.8967559. URL http://arxiv.org/abs/

1805.07813.

[17] Lin Yen-Chen, Andy Zeng, Shuran Song, Phillip Isola, and Tsung-Yi Lin. Learning to See
before Learning to Act: Visual Pre-training for Manipulation. Icra, pages 7286–7293, 2020.
URL https://drive.google.com/file/d/1D0d2plVlvdk0ltGSTK7940TCs3CGTgKy/view.

51

[18] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep
Reinforcement Learning and Demonstrations. 9 2018. doi: 10.15607/rss.2018.xiv.049. URL
http://arxiv.org/abs/1709.10087.

[19] Tong Cui, Jing Xiao, and Aiguo Song. Simulation of grasping deformable objects with a
virtual human hand. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS, pages 3965–3970, 2008. doi: 10.1109/IROS.2008.4651080.

[20] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. 6 2016. URL https://arxiv.org/abs/1606.01540.

[21] Lillian Chin, Felipe Barscevicius, Jeffrey Lipton, and Daniela Rus. Multiplexed Manipulation:
Versatile Multimodal Grasping via a Hybrid Soft Gripper. ICRA2020, 2020. ISBN 9781728173955.

[22] Joseph M. Romano, Kaijen Hsiao, Günter Niemeyer, Sachin Chitta, and Katherine J. Kuchen-
becker. Human-inspired robotic grasp control with tactile sensing. IEEE Transactions on
Robotics, 27(6):1067–1079, 2011. ISSN 15523098. doi: 10.1109/TRO.2011.2162271.

[23] G. De Maria, C. Natale, and S. Pirozzi. Force/tactile sensor for robotic applications. Sensors
and Actuators, A: Physical, 175:60–72, 2012. ISSN 09244247. doi: 10.1016/j.sna.2011.12.042.
URL http://dx.doi.org/10.1016/j.sna.2011.12.042.

[24] Heba Khamis, Raquel Izquierdo Albero, Matteo Salerno, Ahmad Shah Idil, Andrew Loizou,
and Stephen J. Redmond. PapillArray: An incipient slip sensor for dexterous robotic or pros-
thetic manipulation – design and prototype validation. Sensors and Actuators, A: Physical, 270:
195–204, 2018. ISSN 09244247. doi: 10.1016/j.sna.2017.12.058. URL http://dx.doi.org/10.

1016/j.sna.2017.12.058.

[25] Sascha Fleer, Alexandra Moringen, Roberta L. Klatzky, and Helge Ritter. Learning efficient
haptic shape exploration with a rigid tactile sensor array. PLoS ONE, 15(1):1–22, 2020. ISSN
19326203. doi: 10.1371/journal.pone.0226880. URL http://dx.doi.org/10.1371/journal.

pone.0226880.

[26] Carmelo Sferrazza, Thomas Bi, and Raffaello D’Andrea. Learning the sense of touch in
simulation: a sim-to-real strategy for vision-based tactile sensing. 3 2020. URL http:

//arxiv.org/abs/2003.02640.

[27] Yevgen Chebotar, Karol Hausman, Zhe Su, Gaurav S. Sukhatme, and Stefan Schaal. Self-
supervised regrasping using spatio-temporal tactile features and reinforcement learning.
IEEE International Conference on Intelligent Robots and Systems, 2016-Novem:1960–1966, 11 2016.
ISSN 21530866. doi: 10.1109/IROS.2016.7759309.

[28] Jose Sanchez, Carlos M. Mateo, Juan Antonio Corrales, Belhassen Chedli Bouzgarrou, and
Youcef Mezouar. Online Shape Estimation based on Tactile Sensing and Deformation Mod-
eling for Robot Manipulation. IEEE International Conference on Intelligent Robots and Systems,
pages 504–511, 2018. ISSN 21530866. doi: 10.1109/IROS.2018.8594314.

[29] Qi Luo and Jing Xiao. Contact and deformation modeling for interactive environments. IEEE
Transactions on Robotics, 23(3):416–430, 6 2007. ISSN 15523098. doi: 10.1109/TRO.2007.895058.

[30] Jan Matas, Stephen James, and Andrew J. Davison. Sim-to-Real Reinforcement Learning for
Deformable Object Manipulation. (CoRL), 2018. URL http://arxiv.org/abs/1806.07851.

[31] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej
Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep
reinforcement learning for dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.

[32] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine.
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. 6
2018. URL http://arxiv.org/abs/1806.10293.

[33] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv
preprint arXiv:1804.10332, 2018.

52

[34] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-supervised
Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation.
9 2017. URL http://arxiv.org/abs/1709.10489.

[35] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Tech-
nical report, 2019. URL http://robotics.sciencemag.org/.

[36] Heejin Jeong, Brent Schlotfeldt, Hamed Hassani, Manfred Morari, Daniel D. Lee, and
George J. Pappas. Learning Q-network for Active Information Acquisition. IEEE Interna-
tional Conference on Intelligent Robots and Systems, pages 6822–6827, 2019. ISSN 21530866. doi:
10.1109/IROS40897.2019.8968173.

[37] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In ICML, volume 99, pages 278–287,
1999.

[38] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in Neural Information Processing Systems, 2017-Decem(Nips):5049–5059, 2017. ISSN
10495258.

[39] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Re-
quest for Research. 2 2018. URL http://arxiv.org/abs/1802.09464.

[40] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation for games,
robotics and machine learning, 2019. URL http://pybullet.org.

[41] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable Baselines.
https://github.com/hill-a/stable-baselines, 2018.

[42] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. OpenAI Baselines.
https://github.com/openai/baselines, 2017.

53

Acronyms

ANN Artificial Neural Network. 24, 25

DDPG Deep Deterministic Policy Gradient. 6, 7, 29, 30, 39–45

DP Dynamic Programming. 6, 7, 15, 17, 18

DRL Deep Reinforcement Learning. 1, 2, 6, 24, 25, 31–33, 39

GLIE Greedy in the Limit with Infinite Exploration. 7, 18, 19, 24

HER Hindsight Experience Replay. 1, 6–9, 34, 39, 42–45, 47, 49

IS Importance Sampling. 7, 23

KL Kulleman-Leibler. 30

LEARN-REAL Improving reproducibility in LEARNing physical manipulation skills
with simulators using REAListic variations. 6, 8, 10

MC Monte Carlo. 6, 7, 18–20, 23–25, 27–29

MDP Markov Decision Process. 12–14

MPI Message Passing Interface. 42, 44, 45

PPO Proximal Policy Optimization. 30

RL Reinforcement Learning. 1, 5–8, 12–14, 18, 22, 24, 25, 49

SARSA State-Action-Reward-State-Action. 7, 21, 22, 24–26

TD Temporal-Difference. 6, 7, 19–21, 23–25, 27, 29

TRPO Trust Region Policy Optimization. 30

54

