
Master Électronique, Énergie Électrique, Automatique
Parcours Électronique des Système Embarqués

Projet d’Initiation à la Recherche

Mixed-Precision in Graphics Processing
Units

Author :
M. Quentin GALLOUEDEC

Teachers :
M. Ian O’CONNOR

M. Laurent QUIQUEREZ

March 5, 2020



Abstract : Modern graphics computing units (GPUs) are designed and optimized to perform
highly parallel numerical calculations. This parallelism has enabled (and promises) significant
advantages, both in terms of energy performance and calculation.

In this document, we take stock of the different applications of mixed precision. We recall
the standards currently used in the overwhelming majority of systems in terms of numerical
computation. We show that the mixed precision which decreases the precision at the input of an
operation does not necessarily decrease the precision of its output. We show that this previous
principle allows its transposition into one of the branches that most needs computing power:
machine learning. The use of fixed point numbers and half-precision are two very effective ways
to increase the learning ability of complex neural networks. Mixed precision still requires the
use of suitable hardware, failing which the calculation time could on the contrary be lengthened.
The NVIDIA Tensor Core that is found among others in their Tesla V100 range, is an example of
implementation at the hardware level of mixed precision. On the other hand, by abandoning
the traditional von Neumann model, mixed precision can also be transposed to a lower level of
abstraction, using phase change memories.

Résumé : Les GPUs modernes sont conçus et optimisés pour réaliser des calculs numériques
hautement parallèles. Ce parallélisme a permis (et promet) des avantages significatifs, autant en
matière de performances énergétiques que calculatoire.

Dans ce document, nous faisons le point sur les différentes applications de la précision mixte.
Nous rappelons les standards actuellement utilisés dans l’écrasante majorité des systèmes en
matière de calcul numériques. Nous montrons que la précision mixte qui diminue la précision en
entrée d’une opération ne diminue pas nécessairement la précision de sa sortie. Nous montrons
que ce précédent principe permet sa transposition dans l’une des branches qui a le plus besoin
de puissance de calcul : la machine learning. L’utilisation de nombres à virgules fixe et de la
demi-précision sont deux moyens très efficaces d’augmenter la capacité d’apprentissage de
réseaux neuronaux complexes. La précision mixte nécessite tout de même d’utiliser un hardware
adapté, à défaut de quoi le temps de calcul pourraient être au contraire allongé. Le tensor
Core de NVIDIA que l’on trouve entre autres au sein leur gamme Tesla V100, est un exemple
d’implémentation au niveau matériel de la précision mixte. D’autre part, en abandonnant le
modèle traditionnel de von Neumann, la précision mixte est également transposable à un niveau
d’abstraction plus bas, en utilisant des mémoires à changement de phase.



2

1 Introduction

Low-precision floating point numbers use
fewer bits than high-precision floating point
numbers. As a result, they are subject to larger
rounding errors. Therefore, the error caused
by rounding can have a large influence on the
total error. Some algorithms that use simple
precision could not handle the error induced
by this decrease in precision. Nevertheless,
in many cases, it would be very beneficial to
reduce the precision of floating numbers to
gain both speed and power. Clustering or
graph ranking algorithms or the training of
dense neural networks are some examples. The
use of mixed precision may well be a solution
to reduce size, power consumption, weight
and speed in many computer and electronic
applications.

In the first part of this paper, we will first
study the IEEE 754 standard that defines the
format of the binary representation of real
numbers. We will then deduce some theoretical
principles fundamental to the use of mixed
precision. In the second part, we will study
one of the applications that can benefit the
most from the development of mixed precision:
machine learning. We will see how the chosen
binary representation is at the heart of the
performance of its algorithms. Finally, in a last
part, we will see the current research axes to
dimension the hardware to take full advantage
of the application of mixed precision.

2 IEEE 754 : Standard for
Floating-Point Arithmetic

The vast majority of computers use floating-
point arithmetic to represent real numbers. The
technical standard for floating-point arithmetic
was established in 1985 by the IEEE Standard
for Floating-Point Arithmetic (IEEE 754)[1].
Since memories use the binary form, there is
necessarily a loss of precision in the transition
from real numbers to floating point numbers.

2.1 Single-precision floating-point
format

The single-precision floating-point format uses
32 bits of memory. This is why it is
called float32. A half-precision floating-point
number requires 16 bits of memory, and a
double-precision floating-point number uses
64 bits of memory. Throughout this paper, we
will use float16, float32 and float64 to refer
to a half-, single- and double-precision floating-
point number respectively.

Here is the binary representation of a
float32. The encoding principle is similar for
the encoding of float16 and float64

X︸︷︷︸
sign (1 bits)

XXXXXXX︸ ︷︷ ︸
exponent (8 bits)

XXXXXXX · · · XXXXXXX︸ ︷︷ ︸
fraction (23 bits)

Next, let’s index the binary values like this.

X
b31

X
b30

X
b29
· · · X

b1
X
b0

Let us denote by B32 the set of 32 boolean
sequences. Thus, (bi)N<32 ∈ B32 is the binary
representation of the value.
Let us set the following values :

s = (−1)b31 (1)

e =
7

∑
i=0

b23+i2i (2)

f =
23

∑
i=1

bi−232−i (3)

Let us denote by R̄ the set of real numbers
to which we add the {−∞,+∞}. Thus, the
function F 32 : B32 −→ R̄ that associates the
binary representation with its corresponding
real number is1 :

1You might notice that the function is not an injection,
since 0 and ±∞ can be coded in several different ways.



2.2 Other formats 3

F 32 : (bi)N<32 7→
s× 2−127 × f if e = 0
s× 2e−127 × (1 + f ) if e ∈ J1, 254K
s×+∞ if e = 255

(4)

For e = 0 the numbers are called sub-normal
numbers.

Examples
0 00000000 00000000000000000000000

= (−1)0 × 2−127 × 0 = 0
1 10000000 00000000000000000000000

= −1× 2128−127 × (1 + 0) = −2
0 10000011 10000000000000000000000

= 1× 2131−127 × (1 + 2−1) = 12
0 01111111 00000000000000000000000

= 1× 2127−127 × (1 + 0) = 1
The smallest value bigger than 1 :

0 01111111 00000000000000000000001
= 1 + 2−23 ≈ 1.00000011920929

We denote F32 as the image of F 32 under B32.
The density F32 is not uniform over R. But, in
every interval between two power of 2, there
are the exact same amount of numbers.

∀n ∈ J−126, 127K #F32
[2n ,2n+1[

= 223 (5)

Where F32
[2n ,2n+1[

= F32 ∩ [2n, 2n+1[

The figure 1 shows a naive representation of
F32 density within R.

0

−2−1−20−21 2−1 20 21

Figure 1: Naive representation of F32 density
within within R.

2.2 Other formats
Other formats are defined in the standard.
The table 1 describes some features of these
formats2.

Size e size f size
(bits) Name (bits) (bits)

16 Half 5 10

32 Single 8 23

64 Double 11 52

128 Quadruple 15 112

256 Octuple 19 236

Table 1: Formats of IEEE Standard for Floating-
Point Arithmetic

Number encoding for these formats follows
the same rules as for float32. The only
parameter that differs is the size of the bit
transposition of the encoded numbers.

Extended precision formats are also defined in
the standard. It allows a greater precision than
the basic floating point formats. It uses 40 bits
or 80 bits. It does not encode numbers exactly
the same way : it uses also a bit for the integer
part. Since it is rarely used at the code level, we
will focus on binary floating-point formats.

2.3 Mixed precision theory
Mixed precision corresponds to a calculation
method that uses different levels of precision
for the same operation. The aim is to benefit
from the shorter calculation time of coarse
precision, while maintaining the accuracy of
the finer precision. There are several methods
of applying the mixed-precision principle.

One of them is to start the calculations
start with float16 values for rapid matrix
math. But as the numbers are computed,
the machine stores the result at a higher

2Actually, there are also decimal formats described in
the IEEE Standard for Floating-Point Arithmetic. Since it is
less used, we won’t describe it.



4

precision. For instance, if multiplying two
16-bit matrices together, the answer is 32 bits
in size. By accumulating the answers, the
accuracy becomes finer and finer, until it
reaches a level of precision equivalent to those
obtained using float64. Since calculations
are made with float16, they are faster, less
memory is used and power consumption is also
lower. This operation is called Fused Multiply
and Add (FMA).

The FMA operation compute operations
like x × y + z (where x, y and z are floating-
point numbers) as a single floating point
operation. The classical approach would be to
first perform x× y, round, then add the result
with z, and round again. The FMA calculates
x× y + z at once, then rounds. Thus, the FMA
is faster, and more accurate. On the Itanium
processor, the FMA operation requires the same
number of cycles as multiplication or addition
[2].

Since the product of two matrices is
equivalent to making sums of products (see
equation 6), the FMA operation is particularly
suitable. The coefficients of the two matrices
(ai,k, bk,j) can be in float16, while the result
(ci,j) will be in float32.

∀(i, j) ∈Nm ×Np ci,j =
n

∑
k=0

ai,kbk,j (6)

Where m, n, p ∈ N, (ai,j) ∈ M(m, n), (bi,j) ∈
M(n, p), et (ci,j) ∈ M(m, p) the result of (ci,j) =
(ai,j) ∗ (bi,j).

3 Main application : machine
learning

Training a large neural network requires the
ability to perform a large number of operations
per second. Recent work on the CIFAR-10
database has reduced the misclassification rate
to below two percents [3, 4, 5]. The best
classifier uses 557 million parameters. The top-
3 neural networks in this dataset all use at least
10 million parameters.

In the following sub-sections, we will discuss
some proposed methods for using different
representations during the training phase.
These methods aim to increase the computing
speed and decrease the memory used while
maintaining the training performance.

3.1 Using fixed-point numbers with
stochastic rounding

Deep neural networks can be trained using
16-bit fixed-point number instead of float32.
Some explaination of fixed-point number
represenation is given in the appendix A. By
using stochastic rounding, there is hardly any
degradation in the classification accuracy [6].
In the following lines we explain the results of
some work on this subject.

Using fixed-point numbers requires a
conversion stage to go from floating-point
represenation to its new representation. Let
us denote FL as the number of fractional bits in
the fixedpoint represenation, and ε = 2−FL the
gap between two numbers. For a real number
x, we denote bxc as the largest multiple of ε
less than or equal to x. We consider the two
following rounding scheme:

• Round to nearest : the rouding of a
given real number x is set to minimize
the distance between this number and it’s
rounding.

• Stochastic rounding : the rounding of a
given real number x can be either the
nearest higher value or the nearest lower
value. The probability that its rounding is
the value just below is 1− x−bxc

ε .

Several trainings were done on the MNIST
dataset using fully connected Deep Neural
Networks (DNNs). These trainings compared
the two rounding methods by varying the
length for fixed-point numbers. The control
training is the one using float32. By using
stochastic rounding, the loss decreases in the
same way for float32, 14-bit, 10-bit and 8-
bit fixed-point numbers. It means that the



3.2 Using float16 instead of float32 5

neural network trains just as good, whether
it uses float32 or 8-bit fixed-point numbers
computations. Thus, it allows to use less
memory, less power, and compute faster.

3.2 Using float16 instead of
float32

Another way for training deep neural networks
is using float16 instead of float32. Since
float16 use half as much memory, the memory
requirement can be halved. However, the use
of float16 can result in the loss of essential
information. To avoid this, and to obtain results
as good as those obtained with float32, some
methods have been proposed [7].

3.2.1 Store float32 model to preserve small
weights

While training and updating float16 weights
during the backward propagation, many
weight are bound to become very small. The
shortest float16 possible positive number is
2−14 × 2−10 = 2−24 ≈ 5.96× 10−8 (see section
2.2). If the weight is below, is will be set to
0. Small weights have been shown to make a
significant contribution to the learning capacity
of networks ([7] figure 2a). One way to prevent
the disappearance of the small weights is to
store a float32 copy of the model. This
copy would accumulate the gradient after each
optimizer step. The results obtained with
storage of a copy of the weights prove to
be much better than those obtained without
storage. Actually, these results are as good as
those obtained with float32 only.

3.2.2 Scalling the loss

The loss is calculated for each batch to prepare
the backpropagation. Since the main purpose
of a classification problem is to minimize the
loss, the loss will decrease and reach very
low values. During a float32 training of
Multibox SSD detector, it was observed that
the network activation gradient values are

mostly below 2−24[8], which is the smallest
value that float16 can encode. Since almost
no value exceeds 2−8, scaling up the gradients
allows them to occupy more of the float16
representable space3 Scalling the gradient by
a factor a 24 is enough to be obtain the same
accuracy as float32 training.

3.2.3 Accumulating partial products into an
float32 value

The training of neural networks requires a
limited number of different operations. For
each operation, it is possible that the result
may not be completely accurate. The result
will often be the closest number to the result
that can be encoded in the chosen standard.
A computational inaccuracy is shown in the
python command lines below4.

>>> "%.20f" % (1.0/10)
’0. 10000000000000000555 ’

Code Listing 1: Computationnal innacurracy
example in Python code

The smaller the encoding size, the greater
the innacuracy. To maintain a proper accuracy,
some networks need that float16 vector dot-
product accumulates their partial products
into an float32 value before storing it into
the memory [7]. In doing so, the advantage
of using reduced precision is partially lost.
However, the latest Graphic Processing Units
(GPUs) such as Nvidia’s Tesla natively perform
these operations. This allows a considerable
increase in speed while maintaining the
advantages of working with float16 [9].

3When training neural network, you can have another
gradient related issue : gradients can explode when
bakpropopagating. This is when they get exponentially
large from being multiplied by numbers larger than 1. One
method of preventing this problem is the gradient clipping.
It will clip the gradients between two numbers to prevent
them from getting too large.

4Python’s standard float type is a float64.



6

4 Hardware
Since the calculation units are generally
designed to operate on double precision
floating point numbers and on integers, the
use of mixed precision may not be optimal
because of the conversion stage required to go
from one precision to another. In the following
sections we will detail recent efforts in terms
of hardware to adapt the computing units to
mixed precision.

4.1 Matrix computing on GPU
In its original design, the GPU was sized to
quickly manipulate memory to speed up image
creation and processing. The resulting buffer
memory was intended to be sent to the display
device.

The main difference between them and a
Central Process Unit is their highly parallel
structure. This makes GPUs much more
efficient in terms of operating on data that can
be processed in parallel. This is especially the
case for matrix calculations. Each component of
the matrix resulting from an operation depends
only on the coefficients of the matrix argument.
They can thus all be calculated in parallel.

4.2 Half-precision without custom
hardware

We have seen that, with the right architecture,
mixed precision can be a very efficient
way to increase the computing speed while
maintaining the accuracy of float32. However,
most of the processing units were not designed
for float16 computation. In C language,
float16 does not exist natively. However,
a library can be used to process float16
calculations5. Let us denote n ∈ N a natural
integer, A, B ∈ Mn(R). We want to estimate
the time needed to complete the product A× B
for float16, float32 and float32 format. The
C++ code used, and the main characteristics of

5Available at : http://half.sourceforge.net/half_
8hpp.html

the computer used are available in appendix B.
By varying the size of the matrices, the obtained
results are presented in the figure B.

50 100 150 200 250 300 350 400
Matrices size N

10 4

10 3

10 2

10 1

100

El
ap

se
d 

tim
e 

(s
ec

)

Computation time to multiply two matricies N * N

half precision
single precision
double precision

Figure 2: Computation time for a
multiplication of two matrices of size N × N
using float16, float32 and float64

The figure shows a counterintuitive result.
float32 and float64 need about the same
time to compute a product of matrices,
irrespective of their size. What is more, the
time needed when using float16 is ten times
greater than the latter. The reason for the
previous two results is that the processor I
used to do these calculations does not natively
support float16 operations. The processor
converts each input to float64, performs the
calculation, and then converts the output back
to float16 or float32 (depending of the entry
format) [10, 11]. In some cases, the use of
float16 can be an advantage. Since the
conversion is done directly at the core level,
the smaller the size of the data, the greater the
capacity to store in cache memory.

4.3 Tensor core
The first specialized units using FMA
operations to make a product of 4x4 arrays
per clock cycle were introduced by the Volta
version of NVIDIA GPUs. Using mixed
precision, the NVIDIA Tesla V100 accelerator
(featuring the Tesla V100 microarchitecture)

http://half.sourceforge.net/half_8hpp.html
http://half.sourceforge.net/half_8hpp.html


4.4 In-memory mixed precision 7

reaches 125 Tflops/sec. In the following lines,
we study how this performance is achieved,
and quantify the loss of precsion induced by
the use of mixed precision.

Figure 3 shows a simplified schematic of the
Volta SM architecture. It shows the tensorcore,
which comes in addition to the cores dedicated
to float and integer operations.

FP64
cores

FP32
cores

INT32
cores

SFU

Tensor
cores

L1 shared memory

Figure 3: Simplified diagram of the Volta SM
architecture. The NVIDIA Tesla V100 uses 80
SMs. [12]

In practice, the tensor cores have been able to
deliver up to 83 Tflops/s in mixed precision6.

4.4 In-memory mixed precision
Traditional von Neumann architecture reaches
its limits. Solutions such as in-memory
computing, first introduced in 2012 [13], can
be used to improve performance in terms
of computing power. The spatial separation
between the storage unit and the computing
unit is one of the main contributions of
computing time. The cache memory of the
processors aims at reducing this distance, by
selecting the data that will certainly be needed
for a next calculation, and keeping them close
to the Arithmetic Logic Unit (ALU). In-memory
goes even further, by processing and storing
computational data on the same physical
devices organized in a computational memory

6Measurement performed on a Tesla V100 GPU.

unit. It uses nanoscale resistive memory
devices within a computational memory unit.
These units are used for both processing and
memory. The figure 4 shows a view of an
example of resistive memory.

Figure 4: TEm image of an as-fabricated SiO2-
based resistive memories. scale bar: 200 nm
[14]

A hybrid system has been studied, in
which a von Neumann machine and a
computational memory unit coexist [15]. The
calculation memory unit performs the coarse
part of a calculation, and the von Neumann
machine implements a backtracking method to
iteratively improve the accuracy of the result. It
can be defined as a mixed-precision in-memory
computing. The goal of this hybridization
is to combine the high precision of digital
computing with the energy efficiency of in-
memory computing.

Phase-Change Memory (PCM) are resistive
memory devices that can be programmed to
get a specific conductance value. This value
is reached by changing the configuration of
the amorphous and crystalline phase within
the device. It exploit the behaviour of
chalcogenide glass. One way to make the glass
amorphous is to change the coordination state
of the Germanium atoms with a laser pulse
[16]. One million of these devices have been
implemented in a prototype chip.

To test the performance of the latter, the
chosen case study is the multiplication of a
matrix by a vector. First, let βn , γn be numbers
generated uniformly in [0, 1], And θn = βnγn.
Let θ̂ be the averaged result on K PCM devices



8

used. The calculation is performed 1024 times.
The figure 5 shows the error θ̂ − θ distribution
with different values of K. The standard
deviation cis of the order of K−0.5, and the mean
is 0.

0.0 0.4 0.8
0.00

0.02

0.04

0.06

-0.2 -0.1 0.0 0.1 0.2 0.3
0

50

100

150

200

250

C
ou

nt

K = 2
K = 4
K = 16

s.
 d

.

K -0.5

Error θn - θn
^

Figure 5: Distribution of scalar multiplication
error using 1024× K PCM devices [16]

By accurately solving a system of 5 000
equations using 998,752 CFM devices, these
devices have proven their effectiveness in this
case of use.

5 Conclusion and future work
The loss of accuracy due to mixed precision
can be an obstacle to the adoption of this
calculation method. However, we have shown
that with some adaptation, the computing
algorithm can benefit greatly from mixed
precision. In most cases, it is possible to obtain
the same level of precsion as those obtained
with the double precsion calculation. NVIDIA
is confident that applications that require a
large amount of computing capacity are very
likely to benefit greatly from using NVIDIA
Tensor Cores and mixed precsion. A hybrid
system comprising a calculation memory unit
was imagined and created. It performs the
major part of a given calculation task while a

processing unit iteratively improves the result.
Today’s areas of work for NVIDIA are testing
Tensor Cores on applications such as Nek5000
[17] or Fast Multipole Method-accelerated
(FFT) [18]. Other works on the hardware
aim to transpose this inmemory calculation
method for applications other than linear
system resolution, e.g. Machine Learning.



9

Appendices

A Fixed-point numbers
Fixed-point number representation is a data
type that represents a finite, fixed number of
numbers after the decimal point.

XXX · · · XXX︸ ︷︷ ︸
integer part (m bits)

. XXX · · · XXX︸ ︷︷ ︸
fractional part(n bits)

Let’s index the binary values like this.

X
bn+m−1

· · · X
bn

. X
bn−1
· · · X

b0

Then, the value encoded is :

n+m−1

∑
i=0

bi2i−n (7)

The density of fixed-point numbers is
constant in the real numbers. The gap between
two values is always 2−n.

The main advantage of using a fixed-point
representation is performance. The value
stored in memory is an integer, and the
calculation units have very good performance
in terms of integer operation.

B Comparison of calculation
speeds according to the
precision used

The code presented in the listing 2 was used
with values of N between 30 and 400 and
with TYPE with values half, float, double.
To run the code, you will need download
the half.hpp header available on http:
//half.sourceforge.net/half_8hpp.html.
The computer used to obtain the resuls showed
in figure is described in the following lines.

Model : MacBook Pro
Model id : MacBookPro15,4

Processor Name : Quad-Core Intel Core i5
Processor Speed : 1,4 GHz
Number of Processors : 1
Total Number of Cores : 4
L2 Cache (per Core) : 256 Ko
L3 Cache : 6 Mo
Hyper-Threading Technology : Activé
Memory : 8 Go
Compiler : Apple clang version 11.0.0 (clang-
1100.0.33.16)
Target : x86_64-apple-darwin19.2.0
Thread model: posix

# include "half.hpp"
# include <iostream >
# include <ctime >

using half_float :: half;

# define N 150 // Choose matrices size
# define TYPE half // Choose type

int main ()
{

// Define the matrices
TYPE A[N][N];
TYPE B[N][N];
TYPE C[N][N];

// Define matrices coef bounds
float LO = -128;
float HI = 128;

// Variable used for timing
clock_t end;
clock_t begin ;
double elapsed_secs ;

// Set random number in A and B.
srand (( unsigned int)time(NULL));
for(int i=0; i<N; ++i)

for(int j=0; j< N; ++j)
{

A[i][j]= LO+rand () /( RAND_MAX /(HI -LO));
B[i][j]= LO+rand () /( RAND_MAX /(HI -LO));

}

begin = clock ();

// Multiplying A and B.
for(int i=0; i<N; ++i)

for(int j=0; j<N; ++j)
for(int k=0; k<N; ++k)
{

C[i][j] += A[i][k] * B[k][j];
}

end = clock ();

// Show the elapsed time
elapsed_secs = double (end - begin )/

CLOCKS_PER_SEC ;
std :: cout << " elapsed secs : " <<

elapsed_secs << std :: endl;

return 0;
}

Code Listing 2: Code used to etimate to time
needed to perform the multiplication of two
matrices A and B of size N

http://half.sourceforge.net/half_8hpp.html
http://half.sourceforge.net/half_8hpp.html


References 10

Notations

N Set of natural numbers
R Set of real numbers
Ji, jK Set of integers between

i and j included
Ji, jJ Set of integers between

i included and j excluded
En Cartesian power of a set E
#E The cardinality of a set E
B Boole set : {0, 1}
f (E) Image set of a set E through

a function f
R̄ R∪ {+∞,−∞}
Mn,p(R) Set of real matrices of size

n× p where n, p ∈N

Mn(R) Mn,n(R) n ∈N

F 32 Function from B32 to R̄

which gives the real number
associated with its floating point
representation.

F32 F 32(B32)
F32
[2n ,2n+1[

F32 ∩ [2n, 2n+1] : all real numbers
that have a float32 represenation

Table 2: Notations

References
[1] IEEE Standard Association, 3 Park

Avenue, New York, NY 10016-5997
USA. IEEE Std 754TM2019 Standard for
Floating-Point Arithmetic, 2019 edition,
2019. Revision of IEEE SId 754-2008.

[2] Stef Graillat, Philippe Langlois, Nicolas
Louvet, G Hanrot, and P Zimmermann.
Accurate dot products with fma. In RNC-
7, Real Numbers and Computer Conference,
Nancy, France, pages 141–142, 2006.

[3] Yanping Huang, Youlong Cheng, Ankur
Bapna, Orhan Firat, Dehao Chen, Mia

Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, Yonghui Wu, et al. Gpipe:
Efficient training of giant neural networks
using pipeline parallelism. In Advances
in Neural Information Processing Systems,
pages 103–112, 2019.

[4] Martin Wistuba, Ambrish Rawat, and
Tejaswini Pedapati. A survey on neural
architecture search. CoRR, abs/1905.01392,
2019.

[5] Ekin Dogus Cubuk, Barret Zoph,
Dandelion Mané, Vijay Vasudevan, and
Quoc V. Le. Autoaugment: Learning
augmentation policies from data. CoRR,
abs/1805.09501, 2018.

[6] Suyog Gupta, Ankur Agrawal, Kailash
Gopalakrishnan, and Pritish Narayanan.
Deep learning with limited numerical
precision. CoRR, abs/1502.02551, 2015.

[7] Paulius Micikevicius, Sharan Narang,
Jonah Alben, Gregory F. Diamos, Erich
Elsen, David García, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. Mixed
precision training. CoRR, abs/1710.03740,
2017.

[8] Wei Liu, Dragomir Anguelov, Dumitru
Erhan, Christian Szegedy, Scott E. Reed,
Cheng-Yang Fu, and Alexander C. Berg.
SSD: single shot multibox detector. CoRR,
abs/1512.02325, 2015.

[9] Tesla NVIDIA. V100 gpu architecture. the
world’s most advanced data center gpu.
version wp-08608-001_v1. 1. NVIDIA. Aug,
pages 15–16, 2017.

[10] R. Hyde. The Art of Assembly Language.
ITPro collection. No Starch Press, 2003.

[11] Patrick Konsor. Performance Benefits of
Half Precision Floats. Technical report, 08
2012.



References 11

[12] Stefano Markidis, Steven Wei Der
Chien, Erwin Laure, Ivy Bo Peng,
and Jeffrey S. Vetter. NVIDIA tensor
core programmability, performance &
precision. CoRR, abs/1803.04014, 2018.

[13] Matei Zaharia, Mosharaf Chowdhury,
Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin,
Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant
abstraction for in-memory cluster
computing. In Presented as part of the 9th
USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12),
pages 15–28, San Jose, CA, 2012. USENIX.

[14] Yuchao Yang, Peng Gao, Siddharth Gaba,
Ting Chang, Xiaoqing Pan, and Wei
Lu. Observation of conducting filament
growth in nanoscale resistive memories.
Nature communications, 3(1):1–8, 2012.

[15] Manuel Le Gallo, Abu Sebastian, Roland
Mathis, Matteo Manica, Tomas Tuma,
Costas Bekas, Alessandro Curioni, and
Evangelos Eleftheriou. Mixed-precision
memcomputing. CoRR, abs/1701.04279,
2017.

[16] Robert E. Simpson, Paul Fons,
Alexander V Kolobov, Toshio Fukaya,
Miloš Krbal, Takanori Yagi, and Junji
Tominaga. Interfacial phase-change
memory. Nature nanotechnology, 6 8:501–5,
2011.

[17] Nicolas Offermans, Oana Marin, Michel
Schanen, Jing Gong, Paul F. Fischer,
Philipp Schlatter, Aleks Obabko, Adam
Peplinski, Maxwell Hutchinson, and Elia
Merzari. On the strong scaling of
the spectral element solver nek5000 on
petascale systems. CoRR, abs/1706.02970,
2017.

[18] Cris Cecka. Low communication fmm-
accelerated fft on gpus. In Proceedings
of the International Conference for High

Performance Computing, Networking,
Storage and Analysis, pages 1–11, 2017.


	Introduction
	IEEE 754 : Standard for Floating-Point Arithmetic
	Single-precision floating-point format
	Other formats
	Mixed precision theory

	Main application : machine learning
	Using fixed-point numbers with stochastic rounding
	Using float16 instead of float32

	Hardware
	Matrix computing on GPU
	Half-precision without custom hardware
	Tensor core
	In-memory mixed precision

	Conclusion and future work
	Appendices
	Fixed-point numbers
	Comparison of calculation speeds according to the precision used

